The official implementation for Bag of Tricks for Node Classification with Graph Neural Networks (Best Paper Award at DLG-KDD'21 workshop) based on Deep Graph Library.
- dgl 0.5.*
- torch 1.6.0
- ogb 1.3.1
Run
cd src/no-sampling/
python3 run.py [args]
For example,
python3 run.py --optimizer=rmsprop --lr=0.002 --loss=loge --labels --mask-rate=0.5 --model=gat --linear --n-heads=3 --n-hidden=250 --dropout=0.75 --input-drop=0.25 --attn-drop=0.1 --norm-adj=symm
More details of the hyperparameters and experimental results can be found at the end of run.py
.
Run
cd src/ogbn-proteins/
python3 gat.py [args]
For the results in the paper, run
python3 gat.py
or
python3 gat.py --use-labels
First change the directory
cd src/ogbn-products/
For GAT, run
python3 gat.py [args]
For MLP, run
python3 mlp.py [args]
If you find this work helpful in your research, please consider citing our work.
@article{wang2021bag,
title={Bag of Tricks for Node Classification with Graph Neural Networks},
author={Wang, Yangkun and Jin, Jiarui and Zhang, Weinan and Yu, Yong and Zhang, Zheng and Wipf, David},
journal={arXiv preprint arXiv:2103.13355},
year={2021}
}