A hands-on tutorial on how to use Active Learning with Transformer models.
This repository contains the code for this article: TBD
You can either use the Google colab notbook or run it on you own infra as follow
Install the requirement
pip intall -r requirements.txt
To run the experiment, use python main.py
. See the article above for details.
python main.py -h
usage: main.py [-h] [--do_al] [--target_score TARGET_SCORE] [--task_name TASK_NAME] [--random_seed RANDOM_SEED] [--initial_train_dataset_size INITIAL_TRAIN_DATASET_SIZE]
[--query_samples_count QUERY_SAMPLES_COUNT]
optional arguments:
-h, --help show this help message and exit
--do_al
--target_score TARGET_SCORE
--task_name TASK_NAME
--random_seed RANDOM_SEED
--initial_train_dataset_size INITIAL_TRAIN_DATASET_SIZE
--query_samples_count QUERY_SAMPLES_COUNT
Example, the followin will run the active learning experiment ont mrpc dataset
pyton main.py --do_al --taget_score 85.7 --task_name mrpc --random_seed 123 --initial_train_dataset_size 0.3 --query_samples_count 64