-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
df149fe
commit 577d9af
Showing
4 changed files
with
1,821 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,339 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"import seaborn as sns\n", | ||
"from matplotlib import pyplot as plt\n", | ||
"from matplotlib import style\n", | ||
"import sklearn\n", | ||
"from sklearn.linear_model import LogisticRegression" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"from sklearn.linear_model import LogisticRegression\n", | ||
"\n", | ||
"from sklearn.linear_model import Perceptron\n", | ||
"\n", | ||
"from sklearn.tree import DecisionTreeClassifier\n", | ||
"\n", | ||
"from sklearn.svm import LinearSVC\n", | ||
"from sklearn.naive_bayes import GaussianNB" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 25, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_df = pd.read_csv('train.csv')\n", | ||
"test_df = pd.read_csv('test.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_df = train_df.drop(labels = ['PassengerId', 'Cabin'], axis = 1)\n", | ||
"test_df = test_df.drop(labels = ['PassengerId', 'Cabin'], axis = 1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = [train_df, test_df]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Removing NaN from the age Column\n", | ||
"for dataset in data:\n", | ||
" mean = train_df['Age'].mean()\n", | ||
" std = train_df['Age'].std()\n", | ||
" missing_points = dataset['Age'].isnull().sum()\n", | ||
" random_age = np.random.randint(mean - std, mean + std, size = missing_points)\n", | ||
" age_slice = dataset['Age'].copy()\n", | ||
" age_slice[np.isnan(age_slice)] = random_age\n", | ||
" dataset['Age'] = age_slice\n", | ||
" dataset['Age'] = train_df['Age'].astype(int)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"test_df['Age'].isnull().sum()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"##Removing NaN from the embark column\n", | ||
"\n", | ||
"common_value = 'S'\n", | ||
"data = [train_df, test_df]\n", | ||
"for dataset in data:\n", | ||
" dataset['Embarked'] = dataset['Embarked'].fillna(common_value)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = [train_df, test_df]\n", | ||
"titles = {\"Mr\": 1, \"Miss\": 2, \"Mrs\": 3, \"Master\": 4, \"Rare\": 5}\n", | ||
"\n", | ||
"for dataset in data:\n", | ||
" dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\\.', expand=False)\n", | ||
" dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr',\\\n", | ||
" 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')\n", | ||
" dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')\n", | ||
" dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')\n", | ||
" dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')\n", | ||
" dataset['Title'] = dataset['Title'].map(titles)\n", | ||
" dataset['Title'] = dataset['Title'].fillna(0)\n", | ||
"\n", | ||
"train_df = train_df.drop(['Name'], axis=1)\n", | ||
"test_df = test_df.drop(['Name'], axis=1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = [train_df, test_df]\n", | ||
"for dataset in data:\n", | ||
" dataset['Fare'] = dataset['Fare'].fillna(0)\n", | ||
" dataset['Fare'] = dataset[\"Fare\"].astype(int)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"genders = {'male':0, 'female': 1}\n", | ||
"data = [train_df, test_df]\n", | ||
"for dataset in data:\n", | ||
" dataset['Sex'] = dataset['Sex'].map(genders)\n", | ||
" " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_df = train_df.drop(['Ticket'], axis = 1)\n", | ||
"test_df = test_df.drop(['Ticket'], axis = 1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ports = {'S': 0, 'C' : 1, 'Q': 2}\n", | ||
"data = [train_df, test_df]\n", | ||
"for dataset in data:\n", | ||
" dataset['Embarked'] = dataset['Embarked'].map(ports)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = [train_df, test_df]\n", | ||
"\n", | ||
"for dataset in data:\n", | ||
" dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0\n", | ||
" dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1\n", | ||
" dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2\n", | ||
" dataset.loc[(dataset['Fare'] > 31) & (dataset['Fare'] <= 99), 'Fare'] = 3\n", | ||
" dataset.loc[(dataset['Fare'] > 99) & (dataset['Fare'] <= 250), 'Fare'] = 4\n", | ||
" dataset.loc[ dataset['Fare'] > 250, 'Fare'] = 5\n", | ||
" dataset['Fare'] = dataset['Fare'].astype(int)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = [train_df, test_df]\n", | ||
"for dataset in data:\n", | ||
" dataset['Age'] = dataset['Age'].astype(int)\n", | ||
" dataset.loc[ dataset['Age'] <= 11, 'Age'] = 0\n", | ||
" dataset.loc[(dataset['Age'] > 11) & (dataset['Age'] <= 18), 'Age'] = 1\n", | ||
" dataset.loc[(dataset['Age'] > 18) & (dataset['Age'] <= 22), 'Age'] = 2\n", | ||
" dataset.loc[(dataset['Age'] > 22) & (dataset['Age'] <= 27), 'Age'] = 3\n", | ||
" dataset.loc[(dataset['Age'] > 27) & (dataset['Age'] <= 33), 'Age'] = 4\n", | ||
" dataset.loc[(dataset['Age'] > 33) & (dataset['Age'] <= 40), 'Age'] = 5\n", | ||
" dataset.loc[(dataset['Age'] > 40) & (dataset['Age'] <= 66), 'Age'] = 6\n", | ||
" dataset.loc[ dataset['Age'] > 66, 'Age'] = 6\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = [train_df, test_df]\n", | ||
"for dataset in data:\n", | ||
" dataset['relatives'] = dataset['SibSp'] + dataset['Parch']\n", | ||
" dataset.loc[dataset['relatives'] > 0, 'not_alone'] = 0\n", | ||
" dataset.loc[dataset['relatives'] == 0, 'not_alone'] = 1\n", | ||
" dataset['not_alone'] = dataset['not_alone'].astype(int)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"x_train = train_df.drop(['Survived'], axis = 1)\n", | ||
"y_train = train_df['Survived']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 19, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"x_test = test_df" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 20, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"l = LogisticRegression()\n", | ||
"l.fit(x_train, y_train)\n", | ||
"y_pred = l.predict(x_test)\n", | ||
"log_accuracy = round(l.score(x_train,y_train)*100, 2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"decision_tree = DecisionTreeClassifier()\n", | ||
"decision_tree.fit(x_train, y_train)\n", | ||
"y_pred = decision_tree.predict(x_test)\n", | ||
"acc_decision_tree = round(decision_tree.score(x_train, y_train) * 100, 2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 22, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"svm = LinearSVC()\n", | ||
"svm.fit(x_train, y_train)\n", | ||
"y_pred = svm.predict(x_test)\n", | ||
"svm_accuracy = round(svm.score(x_train,y_train)*100)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 23, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"perceptron = Perceptron(max_iter=5)\n", | ||
"perceptron.fit(x_train, y_train)\n", | ||
"y_pred = perceptron.predict(x_test)\n", | ||
"acc_perceptron = round(perceptron.score(x_train, y_train) * 100, 2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 24, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"gaussian = GaussianNB() \n", | ||
"gaussian.fit(x_train, y_train) \n", | ||
"y_pred = gaussian.predict(x_test) \n", | ||
"acc_gaussian = round(gaussian.score(x_train, y_train) * 100, 2)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.