A cloud-native system for analyzing medical prescriptions using OCR, NER, and drug interaction checking. The system processes handwritten prescriptions and provides detailed analysis with safety warnings.
flowchart LR
subgraph Cloud["GCP Cloud Platform"]
GCS[("GCP Storage")]
GKE["GKE Cluster"]
end
subgraph Processing["Prescription Analysis"]
OCR["OCR Engine\nGPU Accelerated"]
NER["NER Analysis"]
DI["Drug Interaction\nChecker"]
LLM["LLM Analysis"]
end
subgraph Output["Results"]
Analysis["Analysis Report"]
Warnings["Safety Warnings"]
Instructions["Patient Instructions"]
end
GCS -->|Input Image| GKE
GKE -->|Process| Processing
OCR -->|Text| NER
NER -->|Entities| DI
DI -->|Drug Data| LLM
LLM --> Output
Output -->|Save| GCS
- OCR Processing: GPU-accelerated text extraction from prescription images
- Named Entity Recognition: Identifies medications, dosages, and instructions
- Drug Interaction Analysis: Checks for potential drug interactions using OpenFDA
- Cloud Storage Integration: Works with GCP Storage for scalable processing
- Kubernetes Deployment: Ready for containerized deployment on GKE
- Python 3.8+
- Docker
- Google Cloud SDK
- Kubernetes CLI (kubectl)
- OpenFDA API key
- Clone and Setup:
git clone https://github.com/yourusername/prescription-analyzer
cd prescription-analyzer
make setup
- Configure Environment:
# Create .env file
echo "OPENFDA_API_KEY=your_key_here" > .env
echo "GOOGLE_PROJECT_ID=your_project_id" >> .env
- Run Locally:
make run
- Deploy to GCP:
# Build and push Docker image
make docker-build
make docker-push
# Deploy to GKE
make deploy
├── src/
│ ├── ocr_processor.py # OCR processing
│ ├── medication_ner.py # Named entity recognition
│ ├── drug_interaction.py # Drug interaction checking
│ └── prompt_llm.py # LLM integration
├── kubernetes/ # Kubernetes configurations
├── scripts/ # Installation scripts
└── Makefile # Build automation
Process a prescription:
from src.main import process_prescription
results = process_prescription("path/to/image.jpg")
print(results['medications'])
print(results['warnings'])
Deploy to GKE:
# Setup GKE cluster
gcloud container clusters create prescription-cluster \
--region us-central1 \
--num-nodes 3 \
--machine-type n1-standard-4
# Deploy application
kubectl apply -f kubernetes/
- Add support for multiple languages
- Implement real-time processing
- Add patient history integration
- Enhance drug interaction detection
- Add support for Azure and AWS