Project repository C3a peri-infarct study
-
Install AIDAmri and AIDAconnect
-
Download MRI raw data (and proc data for comparison) from G-Node
-
Run AIDAmri pre- and postprocessing steps for T2 and DTI data, see manual
-
Extract the graph theoretical measure global density using AIDAconnect and Matlab
mergeDTIdata_input.m and plotGlobalParameter(inputDTI, graphCell, 'Density')
- Run peri-infarct specific Python scripts (4.1_ROI_analysis in AIDAmri)
- Adapt
proc_tools.py
to your folder structure - Run
python proc_tools.py; python 01_dilate_mask_process.py; python 02_apply_xfm_process.py; python 03_create_seed_rois_process_npflip.py; python 04_examine_rois
sequentially - The output of
04_examine_rois
is ROIs_count_voxels.txt with the number of voxels inside the peri-infarct mask per brain region (Allen Mouse Brain Atlas label number). This is used to determine which regions to include in the analysis, here: ACA, SSp-ll/m/ul, SSs, MOp, MOs, and GU:
-
Use the iterativeRun_MA_peri-infarct_ROIs.py script to extract diffusion measures (FA, AD, RD, MD) for each atlas region
-
Retrieve the atlas region-specific diffusion measures from the stored .txt files
e.g. C3a_PT_8wks_T2w_DTI/MRI_proc_data/P56/Treatment_C3a/GV_T3_12_1_1_8_20191008_102322/DTI/DSI_studio/GV_T3_12_1_1_8_20191008_102322_T2w_Anno_DTI_mod_peri_scaled_fa0.txt
(first column: atlas number, second column: atlas label, third: value)