Skip to content

Reproducible code showing the various types of variational autoencoders I have implemented

License

Notifications You must be signed in to change notification settings

BeeGass/VAEs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VAEs
Jax | Flux | PyTorch

A collection of Variational AutoEncoders (VAEs) I have implemented in jax/flax, flux and pytorch with particular effort put into readability and reproducibility.

Python

Requirements For Jax

  • Python >= 3.8
  • jax

Installation

$ git clone https://github.com/BeeGass/Readable-VAEs.git

Usage

$ cd Readable-VAEs/vae-jax
$ python main.py 

Requirements For PyTorch

  • PyTorch >= 1.10

Usage

$ cd Readable-VAEs/vae-pytorch
$ python main.py 

Julia

Requirements For Flux

  • TODO
  • TODO

Usage

$ cd Readable-VAEs/vae-flux
$ # TBA 

Config File Template

TBA

Weights And Biases Integration

TBA

Results

Model PyTorch Jax/Flax Flux Config Paper Reconstruction Samples
VAE Link TBA TBA
Beta-VAE Link TBA TBA
Conditional VAE Link TBA TBA
VQ-VAE-2 Link TBA TBA

Citation

@software{Gass_Readable-VAEs_2021,
  author = {Gass, B.A., Gass, B.A.},
  doi = {10.5281/zenodo.1234},
  month = {12},
  title = {{Readable-VAEs}},
  url = {https://github.com/BeeGass/Readable-VAEs},
  version = {1.0.0},
  year = {2021}
}

About

Reproducible code showing the various types of variational autoencoders I have implemented

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages