Skip to content

Commit

Permalink
Streamline some proofs
Browse files Browse the repository at this point in the history
  • Loading branch information
Ailrun committed May 5, 2024
1 parent 6b9cab1 commit 08d60d9
Show file tree
Hide file tree
Showing 5 changed files with 137 additions and 117 deletions.
23 changes: 12 additions & 11 deletions theories/Core/Semantic/EvaluateLemmas.v
Original file line number Diff line number Diff line change
Expand Up @@ -64,14 +64,15 @@ End functional_eval.
#[export]
Hint Resolve functional_eval_exp functional_eval_natrec functional_eval_app functional_eval_sub : mcltt.

Ltac functional_eval_rewrite_clear :=
repeat match goal with
| H1 : {{ ⟦ ~?M ⟧ ~?p ↘ ~?m1 }}, H2 : {{ ⟦ ~?M ⟧ ~?p ↘ ~?m2 }} |- _ =>
assert (m1 = m2) by mauto; subst; clear H2
| H1 : {{ $| ~?m & ~?n |↘ ~?r1 }}, H2 : {{ $| ~?m & ~?n |↘ ~?r2 }} |- _ =>
assert (r1 = r2) by mauto; subst; clear H2
| H1 : {{ rec ~?m ⟦return ~?A | zero -> ~?MZ | succ -> ~?MS end⟧ ~?p ↘ ~?r1 }}, H2 : {{ rec ~?m ⟦return ~?A | zero -> ~?MZ | succ -> ~?MS end⟧ ~?p ↘ ~?r2 }} |- _ =>
assert (r1 = r2) by mauto; subst; clear H2
| H1 : {{ ⟦ ~?σ ⟧s ~?p ↘ ~?p1 }}, H2 : {{ ⟦ ~?σ ⟧s ~?p ↘ ~?p2 }} |- _ =>
assert (p1 = p2) by mauto; subst; clear H2
end.
Ltac functional_eval_rewrite_clear1 :=
match goal with
| H1 : {{ ⟦ ~?M ⟧ ~?p ↘ ~?m1 }}, H2 : {{ ⟦ ~?M ⟧ ~?p ↘ ~?m2 }} |- _ =>
clean replace m2 with m1 by mauto; clear H2
| H1 : {{ $| ~?m & ~?n |↘ ~?r1 }}, H2 : {{ $| ~?m & ~?n |↘ ~?r2 }} |- _ =>
clean replace r2 with r1 by mauto; clear H2
| H1 : {{ rec ~?m ⟦return ~?A | zero -> ~?MZ | succ -> ~?MS end⟧ ~?p ↘ ~?r1 }}, H2 : {{ rec ~?m ⟦return ~?A | zero -> ~?MZ | succ -> ~?MS end⟧ ~?p ↘ ~?r2 }} |- _ =>
clean replace r2 with r1 by mauto; clear H2
| H1 : {{ ⟦ ~?σ ⟧s ~?p ↘ ~?p1 }}, H2 : {{ ⟦ ~?σ ⟧s ~?p ↘ ~?p2 }} |- _ =>
clean replace p2 with p1 by mauto; clear H2
end.
Ltac functional_eval_rewrite_clear := repeat functional_eval_rewrite_clear1.
37 changes: 0 additions & 37 deletions theories/Core/Semantic/PER.v
Original file line number Diff line number Diff line change
Expand Up @@ -169,43 +169,6 @@ Section Per_univ_elem_ind_def.

End Per_univ_elem_ind_def.

Lemma rel_mod_eval_ex_pull :
forall (A : Type) (P : domain -> domain -> relation domain -> A -> Prop) {T p T' p'} R,
rel_mod_eval (fun a b R => exists x : A, P a b R x) T p T' p' R <->
exists x : A, rel_mod_eval (fun a b R => P a b R x) T p T' p' R.
Proof.
split; intros.
- destruct H.
destruct H1 as [? ?].
eexists; econstructor; eauto.
- do 2 destruct H; econstructor; eauto.
Qed.

Lemma rel_mod_eval_simp_ex :
forall (A : Type) (P : domain -> domain -> relation domain -> Prop) (Q : domain -> domain -> relation domain -> A -> Prop) {T p T' p'} R,
rel_mod_eval (fun a b R => P a b R /\ exists x : A, Q a b R x) T p T' p' R <->
exists x : A, rel_mod_eval (fun a b R => P a b R /\ Q a b R x) T p T' p' R.
Proof.
split; intros.
- destruct H.
destruct H1 as [? [? ?]].
eexists; econstructor; eauto.
- do 2 destruct H; econstructor; eauto.
firstorder.
Qed.

Lemma rel_mod_eval_simp_and :
forall (P : domain -> domain -> relation domain -> Prop) (Q : relation domain -> Prop) {T p T' p'} R,
rel_mod_eval (fun a b R => P a b R /\ Q R) T p T' p' R <->
rel_mod_eval P T p T' p' R /\ Q R.
Proof.
split; intros.
- destruct H.
destruct H1 as [? ?].
split; try econstructor; eauto.
- do 2 destruct H; econstructor; eauto.
Qed.

Definition rel_typ (i : nat) (A : typ) (p : env) (A' : typ) (p' : env) R' := rel_mod_eval (per_univ_elem i) A p A' p' R'.

Inductive per_ctx_env : ctx -> ctx -> relation env -> Prop :=
Expand Down
142 changes: 87 additions & 55 deletions theories/Core/Semantic/PERLemmas.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,43 @@ From Coq Require Import Lia PeanoNat Relations.Relation_Definitions RelationClas
From Equations Require Import Equations.
From Mcltt Require Import Axioms Base Domain Evaluate EvaluateLemmas LibTactics PER Readback ReadbackLemmas Syntax System.

(* Lemma rel_mod_eval_ex_pull : *)
(* forall (A : Type) (P : domain -> domain -> relation domain -> A -> Prop) {T p T' p'} R, *)
(* rel_mod_eval (fun a b R => exists x : A, P a b R x) T p T' p' R <-> *)
(* exists x : A, rel_mod_eval (fun a b R => P a b R x) T p T' p' R. *)
(* Proof. *)
(* split; intros. *)
(* - destruct H. *)
(* destruct H1 as [? ?]. *)
(* eexists; econstructor; eauto. *)
(* - do 2 destruct H; econstructor; eauto. *)
(* Qed. *)

(* Lemma rel_mod_eval_simp_ex : *)
(* forall (A : Type) (P : domain -> domain -> relation domain -> Prop) (Q : domain -> domain -> relation domain -> A -> Prop) {T p T' p'} R, *)
(* rel_mod_eval (fun a b R => P a b R /\ exists x : A, Q a b R x) T p T' p' R <-> *)
(* exists x : A, rel_mod_eval (fun a b R => P a b R /\ Q a b R x) T p T' p' R. *)
(* Proof. *)
(* split; intros. *)
(* - destruct H. *)
(* destruct H1 as [? [? ?]]. *)
(* eexists; econstructor; eauto. *)
(* - do 2 destruct H; econstructor; eauto. *)
(* firstorder. *)
(* Qed. *)

(* Lemma rel_mod_eval_simp_and : *)
(* forall (P : domain -> domain -> relation domain -> Prop) (Q : relation domain -> Prop) {T p T' p'} R, *)
(* rel_mod_eval (fun a b R => P a b R /\ Q R) T p T' p' R <-> *)
(* rel_mod_eval P T p T' p' R /\ Q R. *)
(* Proof. *)
(* split; intros. *)
(* - destruct H. *)
(* destruct H1 as [? ?]. *)
(* split; try econstructor; eauto. *)
(* - do 2 destruct H; econstructor; eauto. *)
(* Qed. *)

Lemma per_bot_sym : forall m n,
{{ Dom m ≈ n ∈ per_bot }} ->
{{ Dom n ≈ m ∈ per_bot }}.
Expand Down Expand Up @@ -84,6 +121,30 @@ Ltac per_univ_elem_econstructor :=
econstructor;
try rewrite <- per_univ_elem_equation_1 in *.

Ltac destruct_rel_by_assumption in_rel H :=
repeat
match goal with
| H' : {{ Dom ~?c ≈ ~?c' ∈ ?in_rel0 }} |- _ =>
tryif (unify in_rel0 in_rel)
then (destruct (H _ _ H') as []; destruct_all; mark_with H' 1)
else fail
end;
unmark_all_with 1.
Ltac destruct_rel_mod_eval :=
repeat
match goal with
| H : (forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ ?in_rel }}), rel_mod_eval _ _ _ _ _ _) |- _ =>
destruct_rel_by_assumption in_rel H; mark H
end;
unmark_all.
Ltac destruct_rel_mod_app :=
repeat
match goal with
| H : (forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ ?in_rel }}), rel_mod_app _ _ _ _ _) |- _ =>
destruct_rel_by_assumption in_rel H; mark H
end;
unmark_all.

Lemma per_univ_elem_right_irrel_gen : forall i A B R,
per_univ_elem i A B R ->
forall A' B' R',
Expand All @@ -103,10 +164,9 @@ Proof.
extensionality c.
extensionality c'.
extensionality equiv_c_c'.
specialize (H1 _ _ equiv_c_c') as [? ? ? ? []].
specialize (H9 _ _ equiv_c_c') as [? ? ? ? ?].
destruct_rel_mod_eval.
functional_eval_rewrite_clear.
specialize (H5 _ _ _ eq_refl H9).
specialize (H12 _ _ _ eq_refl H5).
congruence.
Qed.

Expand All @@ -118,21 +178,12 @@ Proof.
intros. eauto using per_univ_elem_right_irrel_gen.
Qed.

Ltac per_univ_elem_right_irrel_rewrite :=
repeat match goal with
| H1 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }}, H2 : {{ DF ~?A ≈ ~?B' ∈ per_univ_elem ?i ↘ ?R1 }} |- _ =>
mark H2
| H1 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }}, H2 : {{ DF ~?A ≈ ~?B' ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
assert (R2 = R1) by (eapply per_univ_elem_right_irrel; eassumption); subst; mark H2
end; unmark_all.

Ltac functional_per_univ_elem_rewrite_clear :=
repeat match goal with
| H1 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }}, H2 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }} |- _ =>
clear H2
| H1 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }}, H2 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
assert (R2 = R1) by (eapply per_univ_elem_right_irrel; eassumption); subst; clear H2
end.
Ltac per_univ_elem_right_irrel_rewrite1 :=
match goal with
| H1 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }}, H2 : {{ DF ~?A ≈ ~?B' ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
clean replace R2 with R1 by (eauto using per_univ_elem_right_irrel)
end.
Ltac per_univ_elem_right_irrel_rewrite := repeat per_univ_elem_right_irrel_rewrite1.

Lemma per_univ_elem_sym : forall i A B R,
per_univ_elem i A B R ->
Expand All @@ -141,7 +192,7 @@ Proof.
intros. induction H using per_univ_elem_ind; subst.
- split.
+ apply per_univ_elem_core_univ'; trivial.
+ intros. split; intros HD; destruct HD.
+ intros. split; intros [].
* specialize (H1 _ _ _ H0).
firstorder.
* specialize (H1 _ _ _ H0).
Expand All @@ -156,28 +207,24 @@ Proof.
intros.
assert (equiv_c'_c : in_rel c' c) by firstorder.
assert (equiv_c_c : in_rel c c) by (etransitivity; eassumption).
destruct (H1 _ _ equiv_c_c') as [? ? ? ? [? [? ?]]].
destruct (H1 _ _ equiv_c'_c) as [? ? ? ? [? [? ?]]].
destruct (H1 _ _ equiv_c_c) as [? ? ? ? [? [? ?]]].
destruct_rel_mod_eval.
econstructor; eauto.
functional_eval_rewrite_clear.
per_univ_elem_right_irrel_rewrite.
congruence.
assumption.

+ assert (forall a b : domain,
(forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app (out_rel c c' equiv_c_c') a c b c') ->
(forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app (out_rel c c' equiv_c_c') b c a c')). {
(forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app (out_rel c c' equiv_c_c') b c a c')).
{
intros.
assert (equiv_c'_c : in_rel c' c) by firstorder.
assert (equiv_c_c : in_rel c c) by (etransitivity; eassumption).
destruct (H1 _ _ equiv_c_c') as [? ? ? ? [? [? ?]]].
destruct (H1 _ _ equiv_c'_c) as [? ? ? ? [? [? ?]]].
destruct (H1 _ _ equiv_c_c) as [? ? ? ? [? [? ?]]].
destruct (H5 _ _ equiv_c'_c) as [? ? ? ? ?].
destruct_rel_mod_eval.
destruct_rel_mod_app.
functional_eval_rewrite_clear.
per_univ_elem_right_irrel_rewrite.
econstructor; eauto.
rewrite H17, H16.
firstorder.
}
firstorder.
Expand All @@ -191,10 +238,7 @@ Lemma per_univ_elem_left_irrel : forall i A B R A' R',
per_univ_elem i A' B R' ->
R = R'.
Proof.
intros.
apply per_univ_elem_sym in H.
apply per_univ_elem_sym in H0.
destruct_all.
intros * []%per_univ_elem_sym []%per_univ_elem_sym.
eauto using per_univ_elem_right_irrel.
Qed.

Expand All @@ -203,29 +247,22 @@ Lemma per_univ_elem_cross_irrel : forall i A B R B' R',
per_univ_elem i B' A R' ->
R = R'.
Proof.
intros.
apply per_univ_elem_sym in H0.
destruct_all.
intros * ? []%per_univ_elem_sym.
eauto using per_univ_elem_right_irrel.
Qed.

Ltac do_per_univ_elem_irrel_rewrite1 :=
match goal with
| H1 : {{ DF ~?A ≈ ~_ ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ~?A ≈ ~_ ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
tryif unify R1 R2 then fail else
(let H := fresh "H" in assert (R1 = R2) as H by (eapply per_univ_elem_right_irrel; eassumption); subst;
try rewrite <- H in *)
clean replace R2 with R1 by (eauto using per_univ_elem_right_irrel)
| H1 : {{ DF ~_ ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ~_ ≈ ~?B ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
tryif unify R1 R2 then fail else
(let H := fresh "H" in assert (R1 = R2) as H by (eapply per_univ_elem_left_irrel; eassumption); subst;
try rewrite <- H in *)
clean replace R2 with R1 by (eauto using per_univ_elem_left_irrel)
| H1 : {{ DF ~?A ≈ ~_ ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ~_ ≈ ~?A ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
tryif unify R1 R2 then fail else
(let H := fresh "H" in assert (R1 = R2) as H by (eapply per_univ_elem_cross_irrel; eassumption); subst;
try rewrite <- H in *)
(* Order matters less here as H1 and H2 cannot be exchanged *)
clean replace R2 with R1 by (symmetry; eauto using per_univ_elem_cross_irrel)
end.

Ltac do_per_univ_elem_irrel_rewrite :=
Expand All @@ -245,32 +282,27 @@ Proof with solve [mauto].
induction 1 using per_univ_elem_ind; intros * HT2;
invert_per_univ_elem HT2; clear HT2.
- split; mauto.
intros.
destruct H0, H2.
intros * [] [].
per_univ_elem_irrel_rewrite.
destruct (H1 _ _ _ H0 _ H2) as [? ?].
econstructor...
- split; try econstructor...
- per_univ_elem_irrel_rewrite.
rename in_rel0 into in_rel.
specialize (IHper_univ_elem _ equiv_a_a') as [? _].
split.
+ per_univ_elem_econstructor; mauto.
intros.
assert (equiv_c_c : in_rel c c) by (etransitivity; [ | symmetry]; eassumption).
specialize (H1 _ _ equiv_c_c) as [? ? ? ? [? ?]].
specialize (H9 _ _ equiv_c_c') as [].
destruct_rel_mod_eval.
per_univ_elem_irrel_rewrite.
firstorder (econstructor; eauto).
+ setoid_rewrite H2.
intros.
assert (equiv_c'_c' : in_rel c' c') by (etransitivity; [symmetry | ]; eassumption).
destruct (H1 _ _ equiv_c_c') as [? ? ? ? [? ?]].
specialize (H1 _ _ equiv_c'_c') as [? ? ? ? [? ?]].
specialize (H9 _ _ equiv_c'_c') as [].
specialize (H3 _ _ equiv_c_c') as [].
specialize (H4 _ _ equiv_c'_c') as [].
destruct_rel_mod_eval.
destruct_rel_mod_app.
per_univ_elem_irrel_rewrite.
firstorder (econstructor; eauto).

- split; try per_univ_elem_econstructor...
Qed.
19 changes: 10 additions & 9 deletions theories/Core/Semantic/ReadbackLemmas.v
Original file line number Diff line number Diff line change
Expand Up @@ -49,12 +49,13 @@ End functional_read.
#[export]
Hint Resolve functional_read_nf functional_read_ne functional_read_typ : mcltt.

Ltac functional_read_rewrite_clear :=
repeat match goal with
| H1 : {{ Rnf ~?m in ?s ↘ ~?M1 }}, H2 : {{ Rnf ~?m in ?s ↘ ~?M2 }} |- _ =>
idtac H1; assert (M1 = M2) by mauto; subst; clear H2
| H1 : {{ Rne ~?m in ?s ↘ ~?M1 }}, H2 : {{ Rne ~?m in ?s ↘ ~?M2 }} |- _ =>
idtac H1; assert (M1 = M2) by mauto; subst; clear H2
| H1 : {{ Rtyp ~?m in ?s ↘ ~?M1 }}, H2 : {{ Rtyp ~?m in ?s ↘ ~?M2 }} |- _ =>
idtac H1; assert (M1 = M2) by mauto; subst; clear H2
end.
Ltac functional_read_rewrite_clear1 :=
match goal with
| H1 : {{ Rnf ~?m in ?s ↘ ~?M1 }}, H2 : {{ Rnf ~?m in ?s ↘ ~?M2 }} |- _ =>
clean replace M2 with M1 by mauto; clear H2
| H1 : {{ Rne ~?m in ?s ↘ ~?M1 }}, H2 : {{ Rne ~?m in ?s ↘ ~?M2 }} |- _ =>
clean replace M2 with M1 by mauto; clear H2
| H1 : {{ Rtyp ~?m in ?s ↘ ~?M1 }}, H2 : {{ Rtyp ~?m in ?s ↘ ~?M2 }} |- _ =>
clean replace M2 with M1 by mauto; clear H2
end.
Ltac functional_read_rewrite_clear := repeat functional_read_rewrite_clear1.
Loading

0 comments on commit 08d60d9

Please sign in to comment.