Skip to content

Commit

Permalink
Fix per_univ_elem
Browse files Browse the repository at this point in the history
  • Loading branch information
Ailrun committed May 6, 2024
1 parent 80178d3 commit 0b6a80d
Showing 1 changed file with 9 additions and 8 deletions.
17 changes: 9 additions & 8 deletions theories/Core/Semantic/PER.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,10 @@ From Coq Require Import Lia PeanoNat Relation_Definitions RelationClasses.
From Equations Require Import Equations.
From Mcltt Require Import Base Domain Evaluate LibTactics Readback Syntax System.

Notation "'Dom' a ≈ b ∈ R" := (R a b : Prop) (in custom judg at level 90, a custom domain, b custom domain, R constr).
Notation "'DF' a ≈ b ∈ R ↘ R'" := (R a b R' : Prop) (in custom judg at level 90, a custom domain, b custom domain, R constr, R' constr).
Notation "'Exp' a ≈ b ∈ R" := (R a b : Prop) (in custom judg at level 90, a custom exp, b custom exp, R constr).
Notation "'EF' a ≈ b ∈ R ↘ R'" := (R a b R' : Prop) (in custom judg at level 90, a custom exp, b custom exp, R constr, R' constr).
Notation "'Dom' a ≈ b ∈ R" := ((R a b : Prop) : Prop) (in custom judg at level 90, a custom domain, b custom domain, R constr).
Notation "'DF' a ≈ b ∈ R ↘ R'" := ((R a b R' : Prop) : Prop) (in custom judg at level 90, a custom domain, b custom domain, R constr, R' constr).
Notation "'Exp' a ≈ b ∈ R" := (R a b : (Prop : Type)) (in custom judg at level 90, a custom exp, b custom exp, R constr).
Notation "'EF' a ≈ b ∈ R ↘ R'" := (R a b R' : (Prop : Type)) (in custom judg at level 90, a custom exp, b custom exp, R constr, R' constr).

Generalizable All Variables.

Expand Down Expand Up @@ -93,7 +93,8 @@ Section Per_univ_elem_core_def.
(forall f f', elem_rel f f' = forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app (out_rel equiv_c_c') f c f' c') ->
{{ DF Π a p B ≈ Π a' p' B' ∈ per_univ_elem_core ↘ elem_rel }} }
| per_univ_elem_core_neut :
`{ {{ DF ⇑ a b ≈ ⇑ a' b' ∈ per_univ_elem_core ↘ per_ne }} }
`{ {{ Dom b ≈ b' ∈ per_bot }} ->
{{ DF ⇑ a b ≈ ⇑ a' b' ∈ per_univ_elem_core ↘ per_ne }} }
.

Hypothesis
Expand All @@ -118,7 +119,7 @@ Section Per_univ_elem_core_def.
motive d{{{ Π A p B }}} d{{{ Π A' p' B' }}} elem_rel).

Hypothesis
(case_ne : (forall {a b a' b'}, motive d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}} per_ne)).
(case_ne : (forall {a b a' b'}, {{ Dom b ≈ b' ∈ per_bot }} -> motive d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}} per_ne)).

#[derive(equations=no, eliminator=no)]
Equations per_univ_elem_core_strong_ind a b R (H : {{ DF a ≈ b ∈ per_univ_elem_core ↘ R }}) : {{ DF a ≈ b ∈ motive ↘ R }} :=
Expand All @@ -132,7 +133,7 @@ Section Per_univ_elem_core_def.
mk_rel_mod_eval b b' evb evb' (conj _ (per_univ_elem_core_strong_ind _ _ _ Rel))
end)
HE;
per_univ_elem_core_strong_ind a b R per_univ_elem_core_neut := case_ne.
per_univ_elem_core_strong_ind a b R (per_univ_elem_core_neut equiv_b_b') := case_ne equiv_b_b'.

End Per_univ_elem_core_def.

Expand Down Expand Up @@ -184,7 +185,7 @@ Section Per_univ_elem_ind_def.
motive i d{{{ Π A p B }}} d{{{ Π A' p' B' }}} elem_rel).

Hypothesis
(case_ne : (forall i {a b a' b'}, motive i d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}} per_ne)).
(case_ne : (forall i {a b a' b'}, {{ Dom b ≈ b' ∈ per_bot }} -> motive i d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}} per_ne)).

#[local]
Ltac def_simp := simp per_univ_elem in *.
Expand Down

0 comments on commit 0b6a80d

Please sign in to comment.