-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
218 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
From Mcltt Require Import Syntax. | ||
|
||
Reserved Notation "'env'". | ||
|
||
Inductive domain : Set := | ||
| d_nat : domain | ||
| d_pi : domain -> env -> exp -> domain | ||
| d_univ : nat -> domain | ||
| d_zero : domain | ||
| d_succ : domain -> domain | ||
| d_fn : env -> exp -> domain | ||
| d_neut : domain -> domain_ne -> domain | ||
with domain_ne : Set := | ||
(** Notice that the number x here is not a de Bruijn index but an absolute | ||
representation of names. That is, this number does not change relative to the | ||
binding structure it currently exists in. | ||
*) | ||
| d_var : forall (x : nat), domain_ne | ||
| d_app : domain_ne -> domain_nf -> domain_ne | ||
| d_natrec : env -> typ -> domain -> exp -> domain_ne -> domain_ne | ||
with domain_nf : Set := | ||
| d_dom : domain -> domain -> domain_nf | ||
where "'env'" := (nat -> domain). | ||
|
||
#[global] Declare Custom Entry domain. | ||
#[global] Bind Scope exp_scope with domain. | ||
|
||
Notation "'d{{{' x '}}}'" := x (at level 0, x custom domain at level 99) : exp_scope. | ||
Notation "( x )" := x (in custom domain at level 0, x custom domain at level 60) : exp_scope. | ||
Notation "~ x" := x (in custom domain at level 0, x constr at level 0) : exp_scope. | ||
Notation "x" := x (in custom domain at level 0, x global) : exp_scope. | ||
Notation "'λ' p M" := (d_fn p M) (in custom domain at level 0, p custom domain at level 30, M custom exp at level 30) : exp_scope. | ||
Notation "f x .. y" := (d_app .. (d_app f x) .. y) (in custom domain at level 40, f custom domain, x custom domain at next level, y custom domain at next level) : exp_scope. | ||
Notation "'ℕ'" := d_nat (in custom domain) : exp_scope. | ||
Notation "'𝕌' @ n" := (d_univ n) (in custom domain at level 0, n constr at level 0) : exp_scope. | ||
Notation "'Π' a p B" := (d_pi a p B) (in custom domain at level 0, a custom domain at level 30, p custom domain at level 0, B custom exp at level 30) : exp_scope. | ||
Notation "'zero'" := d_zero (in custom domain at level 0) : exp_scope. | ||
Notation "'succ' m" := (d_succ m) (in custom domain at level 30, m custom domain at level 30) : exp_scope. | ||
Notation "'rec' m 'under' p 'return' P | 'zero' -> mz | 'succ' -> MS 'end'" := (d_natrec p P mz MS m) (in custom domain at level 0, P custom exp at level 60, mz custom domain at level 60, MS custom exp at level 60, p custom domain at level 60, m custom domain at level 60) : exp_scope. | ||
Notation "'!' n" := (d_var n) (in custom domain at level 0, n constr at level 0) : exp_scope. | ||
Notation "'⇑' a m" := (d_neut a m) (in custom domain at level 0, a custom domain at level 30, m custom domain at level 30) : exp_scope. | ||
Notation "'⇓' a m" := (d_dom a m) (in custom domain at level 0, a custom domain at level 30, m custom domain at level 30) : exp_scope. | ||
Notation "'⇑!' a n" := (d_neut a (d_var n)) (in custom domain at level 0, a custom domain at level 30, n constr at level 0) : exp_scope. | ||
|
||
Definition empty_env : env := fun x => d{{{ zero }}}. | ||
Definition extend_env (p : env) (d : domain) : env := | ||
fun n => | ||
match n with | ||
| 0 => d | ||
| S n' => p n' | ||
end. | ||
Notation "p ↦ m" := (extend_env p m) (in custom domain at level 20, left associativity) : exp_scope. | ||
|
||
Definition drop_env (p : env) : env := fun n => p (S n). | ||
Notation "p '↯'" := (drop_env p) (in custom domain at level 10, p custom domain) : exp_scope. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
From Mcltt Require Import Base. | ||
From Mcltt Require Import Domain. | ||
From Mcltt Require Import Syntax. | ||
From Mcltt Require Import System. | ||
|
||
Reserved Notation "'⟦' M '⟧' p '↘' r" (in custom judg at level 80, M custom exp at level 99, p custom domain at level 99, r custom domain at level 99). | ||
Reserved Notation "'rec' m '⟦return' A | 'zero' -> MZ | 'succ' -> MS 'end⟧' p '↘' r" (in custom judg at level 80, m custom domain at level 99, A custom exp at level 99, MZ custom exp at level 99, MS custom exp at level 99, p custom domain at level 99, r custom domain at level 99). | ||
Reserved Notation "'$|' m '&' n '|↘' r" (in custom judg at level 80, m custom domain at level 99, n custom domain at level 99, r custom domain at level 99). | ||
Reserved Notation "'⟦' σ '⟧s' p '↘' p'" (in custom judg at level 80, σ custom exp at level 99, p custom domain at level 99, p' custom domain at level 99). | ||
|
||
Generalizable All Variables. | ||
|
||
Inductive eval_exp : exp -> env -> domain -> Prop := | ||
| eval_exp_typ : | ||
`( {{ ⟦ Type@i ⟧ p ↘ 𝕌@i }} ) | ||
| eval_exp_nat : | ||
`( {{ ⟦ ℕ ⟧ p ↘ 𝕟 }} ) | ||
| eval_exp_zero : | ||
`( {{ ⟦ zero ⟧ p ↘ zero }} ) | ||
| eval_exp_succ : | ||
`( {{ ⟦ M ⟧ p ↘ m }} -> | ||
{{ ⟦ succ M ⟧ p ↘ succ m }} ) | ||
| eval_exp_natrec : | ||
`( {{ ⟦ M ⟧ p ↘ m }} -> | ||
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ p ↘ r }} -> | ||
{{ ⟦ rec M return A | zero -> MZ | succ -> MS end ⟧ p ↘ r }} ) | ||
| eval_exp_pi : | ||
`( {{ ⟦ A ⟧ p ↘ a }} -> | ||
{{ ⟦ Π A B ⟧ p ↘ Π a p B }} ) | ||
| eval_exp_fn : | ||
`( {{ ⟦ λ A M ⟧ p ↘ λ p M }} ) | ||
| eval_exp_app : | ||
`( {{ ⟦ M ⟧ p ↘ m }} -> | ||
{{ ⟦ N ⟧ p ↘ n }} -> | ||
{{ $| m & n |↘ r }} -> | ||
{{ ⟦ M N ⟧ p ↘ r }} ) | ||
| eval_exp_sub : | ||
`( {{ ⟦ σ ⟧s p ↘ p' }} -> | ||
{{ ⟦ M ⟧ p' ↘ m }} -> | ||
{{ ⟦ M[σ] ⟧ p ↘ m }} ) | ||
where "'⟦' e '⟧' p '↘' r" := (eval_exp e p r) (in custom judg) | ||
with eval_natrec : exp -> exp -> exp -> domain -> env -> domain -> Prop := | ||
| eval_natrec_zero : | ||
`( {{ ⟦ MZ ⟧ p ↘ mz }} -> | ||
{{ rec zero ⟦return A | zero -> MZ | succ -> MS end⟧ p ↘ mz }} ) | ||
| eval_natrec_succ : | ||
`( {{ rec b ⟦return A | zero -> MZ | succ -> MS end⟧ p ↘ r }} -> | ||
{{ ⟦ MS ⟧ p ↦ b ↦ r ↘ ms }} -> | ||
{{ rec succ b ⟦return A | zero -> MZ | succ -> MS end⟧ p ↘ ms }} ) | ||
| eval_natrec_neut : | ||
`( {{ ⟦ MZ ⟧ p ↘ mz }} -> | ||
{{ ⟦ A ⟧ p ↦ ⇑ 𝕟 m ↘ a }} -> | ||
{{ rec ⇑ 𝕟 m ⟦return A | zero -> MZ | succ -> MS end⟧ p ↘ ⇑ a (rec m under p return A | zero -> mz | succ -> MS end) }} ) | ||
where "'rec' m '⟦return' A | 'zero' -> MZ | 'succ' -> MS 'end⟧' p '↘' r" := (eval_natrec A MZ MS m p r) (in custom judg) | ||
with eval_app : domain -> domain -> domain -> Prop := | ||
| eval_app_fn : | ||
`( {{ ⟦ M ⟧ p ↦ n ↘ m }} -> | ||
{{ $| λ p M & n |↘ m }} ) | ||
| eval_app_neut : | ||
`( {{ ⟦ B ⟧ p ↦ n ↘ b }} -> | ||
{{ $| ⇑ (Π a p B) m & n |↘ ⇑ b (m (⇓ a N)) }} ) | ||
where "'$|' m '&' n '|↘' r" := (eval_app m n r) (in custom judg) | ||
with eval_sub : sub -> env -> env -> Prop := | ||
| eval_sub_id : | ||
`( {{ ⟦ Id ⟧s p ↘ p }} ) | ||
| eval_sub_weaken : | ||
`( {{ ⟦ Wk ⟧s p ↘ p↯ }} ) | ||
| eval_sub_extend : | ||
`( {{ ⟦ σ ⟧s p ↘ p' }} -> | ||
{{ ⟦ M ⟧ p ↘ m }} -> | ||
{{ ⟦ σ ,, M ⟧s p ↘ p' ↦ m }} ) | ||
| eval_sub_compose : | ||
`( {{ ⟦ τ ⟧s p ↘ p' }} -> | ||
{{ ⟦ σ ⟧s p' ↘ p'' }} -> | ||
{{ ⟦ σ ∘ τ ⟧s p ↘ p'' }} ) | ||
where "'⟦' σ '⟧s' p '↘' p'" := (eval_sub σ p p') (in custom judg) | ||
. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
From Mcltt Require Import Base. | ||
From Mcltt Require Import Domain. | ||
From Mcltt Require Import Evaluate. | ||
From Mcltt Require Import Syntax. | ||
From Mcltt Require Import System. | ||
|
||
Reserved Notation "'Rnf' m 'in' s ↘ M" (in custom judg at level 80, m custom domain, s constr, M custom nf). | ||
Reserved Notation "'Rne' m 'in' s ↘ M" (in custom judg at level 80, m custom domain, s constr, M custom nf). | ||
Reserved Notation "'Rtyp' m 'in' s ↘ M" (in custom judg at level 80, m custom domain, s constr, M custom nf). | ||
|
||
Generalizable All Variables. | ||
|
||
Inductive read_nf : nat -> domain_nf -> nf -> Prop := | ||
| read_nf_type : | ||
`( {{ Rtyp a in s ↘ A }} -> | ||
{{ Rnf ⇓ 𝕌@i a in s ↘ A }} ) | ||
| read_nf_zero : | ||
`( {{ Rnf ⇓ ℕ zero in s ↘ zero }} ) | ||
| read_nf_succ : | ||
`( {{ Rnf ⇓ ℕ m in s ↘ M }} -> | ||
{{ Rnf ⇓ ℕ (succ m) in s ↘ succ M }} ) | ||
| read_nf_nat_neut : | ||
`( {{ Rne m in s ↘ M }} -> | ||
{{ Rnf ⇓ ℕ (⇑ ℕ m) in s ↘ ⇑ M }} ) | ||
| read_nf_fn : | ||
(* Nf of arg type *) | ||
`( {{ Rtyp a in s ↘ A }} -> | ||
|
||
(* Nf of eta-expanded body *) | ||
{{ $| m & ⇑! a s |↘ m' }} -> | ||
{{ ⟦ B ⟧ p ↦ ⇑! a s ↘ b }} -> | ||
{{ Rnf ⇓ b m' in S s ↘ M }} -> | ||
|
||
{{ Rnf ⇓ (Π a p B) m in s ↘ λ A M }} ) | ||
| read_nf_neut : | ||
`( {{ Rne m in s ↘ M }} -> | ||
{{ Rnf ⇓ (⇑ a b) (⇑ c m) in s ↘ ⇑ M }} ) | ||
where "'Rnf' m 'in' s ↘ M" := (read_nf s m M) (in custom judg) : exp_scope | ||
with read_ne : nat -> domain_ne -> ne -> Prop := | ||
| read_ne_var : | ||
`( {{ Rne !x in s ↘ #(s - x - 1) }} ) | ||
| read_ne_app : | ||
`( {{ Rne m in s ↘ M }} -> | ||
{{ Rnf n in s ↘ N }} -> | ||
{{ Rne m n in s ↘ M N }} ) | ||
| read_ne_natrec : | ||
(* Nf of motive *) | ||
`( {{ ⟦ B ⟧ p ↦ ⇑! ℕ s ↘ b }} -> | ||
{{ Rtyp b in S s ↘ B' }} -> | ||
|
||
(* Nf of mz *) | ||
{{ ⟦ B ⟧ p ↦ zero ↘ bz }} -> | ||
{{ Rnf ⇓ bz mz in s ↘ MZ }} -> | ||
|
||
(* Nf of MS *) | ||
{{ ⟦ B ⟧ p ↦ succ (⇑! ℕ s) ↘ bs }} -> | ||
{{ ⟦ MS ⟧ p ↦ ⇑! ℕ s ↦ ⇑! b (S s) ↘ ms }} -> | ||
{{ Rnf ⇓ bs ms in S (S s) ↘ MS' }} -> | ||
|
||
(* Ne of m *) | ||
{{ Rne m in s ↘ M }} -> | ||
|
||
{{ Rne rec m under p return B | zero -> mz | succ -> MS end in s ↘ rec M return B' | zero -> MZ | succ -> MS' end }} ) | ||
where "'Rne' m 'in' s ↘ M" := (read_ne s m M) (in custom judg) : exp_scope | ||
with read_typ : nat -> domain -> nf -> Prop := | ||
| read_typ_univ : | ||
`( {{ Rtyp 𝕌@i in s ↘ Type@i }} ) | ||
| read_typ_nat : | ||
`( {{ Rtyp ℕ in s ↘ ℕ }} ) | ||
| read_typ_pi : | ||
(* Nf of arg type *) | ||
`( {{ Rtyp a in s ↘ A }} -> | ||
|
||
(* Nf of ret type *) | ||
{{ ⟦ B ⟧ p ↦ ⇑! a s ↘ b }} -> | ||
{{ Rtyp b in S s ↘ B' }} -> | ||
|
||
{{ Rtyp Π a p B in s ↘ Π A B' }}) | ||
| read_typ_neut : | ||
`( {{ Rne b in s ↘ B }} -> | ||
{{ Rtyp ⇑ a b in s ↘ ⇑ B }}) | ||
where "'Rtyp' m 'in' s ↘ M" := (read_typ s m M) (in custom judg) : exp_scope | ||
. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters