Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

attempt to remove unnecessary axioms #52

Merged
merged 6 commits into from
May 4, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 0 additions & 34 deletions theories/Core/Axioms.v
Original file line number Diff line number Diff line change
@@ -1,39 +1,5 @@
Require Export Coq.Logic.PropExtensionality.
Require Export Coq.Logic.IndefiniteDescription.
Require Export Coq.Logic.FunctionalExtensionality.


Lemma dep_functional_choice :
forall (A : Type) (B : A -> Type) (R: forall a, B a -> Prop),
(forall x : A, exists y : B x, R x y) ->
(exists f : forall x, B x, forall x : A, R x (f x)).
Proof.
intros.
exists (fun x => proj1_sig (constructive_indefinite_description (R x) (H x))).
intro x.
apply (proj2_sig (constructive_indefinite_description (R x) (H x))).
Qed.

Lemma dep_functional_choice_equiv :
forall (A : Type) (B : A -> Type) (R: forall a, B a -> Prop),
(forall x : A, exists y : B x, R x y) <->
(exists f : forall x, B x, forall x : A, R x (f x)).
Proof.
intros; split.
- apply dep_functional_choice.
- firstorder.
Qed.

Lemma functional_choice_equiv :
forall (A B : Type) (R:A->B->Prop),
(forall x : A, exists y : B, R x y) <->
(exists f : A->B, forall x : A, R x (f x)).
Proof.
intros; split.
- apply functional_choice.
- firstorder.
Qed.

Lemma exists_absorption :
forall (A : Type) (P : A -> Prop) (Q : Prop),
(exists x : A, P x) /\ Q <-> (exists x : A, P x /\ Q).
Expand Down
11 changes: 7 additions & 4 deletions theories/Core/Semantic/PER.v
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
From Coq Require Import Lia PeanoNat Relations.
From Coq Require Import Lia PeanoNat Relations.Relation_Definitions Classes.RelationClasses.
From Equations Require Import Equations.
From Mcltt Require Import Base Domain Evaluate Readback Syntax System.

Expand Down Expand Up @@ -53,6 +53,7 @@ Section Per_univ_elem_core_def.
`{ forall (in_rel : relation domain)
(out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain)
(equiv_a_a' : {{ DF a ≈ a' ∈ per_univ_elem_core ↘ in_rel}}),
PER in_rel ->
(forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}),
rel_mod_eval per_univ_elem_core B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) ->
(forall f f', elem_rel f f' = forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app (out_rel equiv_c_c') f c f' c') ->
Expand All @@ -76,6 +77,7 @@ Section Per_univ_elem_core_def.
(out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain),
{{ DF A ≈ A' ∈ per_univ_elem_core ↘ in_rel }} ->
motive A A' in_rel ->
PER in_rel ->
(forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}),
rel_mod_eval (fun x y R => {{ DF x ≈ y ∈ per_univ_elem_core ↘ R }} /\ motive x y R) B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) ->
(forall f f', elem_rel f f' = forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app (out_rel equiv_c_c') f c f' c') ->
Expand All @@ -89,8 +91,8 @@ Section Per_univ_elem_core_def.
per_univ_elem_core_strong_ind a b R (per_univ_elem_core_univ lt_j_i eq) := case_U _ _ lt_j_i eq;
per_univ_elem_core_strong_ind a b R per_univ_elem_core_nat := case_nat;
per_univ_elem_core_strong_ind a b R
(per_univ_elem_core_pi in_rel out_rel equiv_a_a' HT HE) :=
case_Pi out_rel equiv_a_a' (per_univ_elem_core_strong_ind _ _ _ equiv_a_a')
(per_univ_elem_core_pi in_rel out_rel equiv_a_a' per HT HE) :=
case_Pi out_rel equiv_a_a' (per_univ_elem_core_strong_ind _ _ _ equiv_a_a') per
(fun _ _ equiv_c_c' => match HT _ _ equiv_c_c' with
| mk_rel_mod_eval b b' evb evb' Rel =>
mk_rel_mod_eval b b' evb evb' (conj _ (per_univ_elem_core_strong_ind _ _ _ Rel))
Expand Down Expand Up @@ -138,6 +140,7 @@ Section Per_univ_elem_ind_def.
(out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain),
{{ DF A ≈ A' ∈ per_univ_elem i ↘ in_rel }} ->
motive i A A' in_rel ->
PER in_rel ->
(forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}),
HuStmpHrrr marked this conversation as resolved.
Show resolved Hide resolved
rel_mod_eval (fun x y R => {{ DF x ≈ y ∈ per_univ_elem i ↘ R }} /\ motive i x y R) B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) ->
(forall f f', elem_rel f f' = forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app (out_rel equiv_c_c') f c f' c') ->
Expand All @@ -156,7 +159,7 @@ Section Per_univ_elem_ind_def.
per_univ_elem_core_strong_ind i _ (motive i)
(fun j j' j_lt_i eq => case_U j j' i j_lt_i eq (fun A B R' H' => per_univ_elem_ind' _ A B R' _))
(case_N i)
(fun A p B A' p' B' in_rel elem_rel out_rel HA IHA HT HE => case_Pi i out_rel _ IHA _ HE)
(fun A p B A' p' B' in_rel elem_rel out_rel HA IHA per HT HE => case_Pi i out_rel _ IHA per _ HE)
(@case_ne i)
a b R H.

Expand Down
228 changes: 122 additions & 106 deletions theories/Core/Semantic/PERLemmas.v
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
From Coq Require Import Lia PeanoNat Relations ChoiceFacts Program.Equality.
From Coq Require Import Lia PeanoNat Relations.Relation_Definitions RelationClasses Program.Equality.
From Equations Require Import Equations.
From Mcltt Require Import Axioms Base Domain Evaluate EvaluateLemmas LibTactics PER Readback ReadbackLemmas Syntax System.

Expand Down Expand Up @@ -99,14 +99,14 @@ Proof.
subst.
extensionality f.
extensionality f'.
rewrite H1, H8.
rewrite H2, H10.
extensionality c.
extensionality c'.
extensionality equiv_c_c'.
specialize (H0 _ _ equiv_c_c') as [? ? ? ? []].
specialize (H7 _ _ equiv_c_c') as [? ? ? ? ?].
specialize (H1 _ _ equiv_c_c') as [? ? ? ? []].
specialize (H9 _ _ equiv_c_c') as [? ? ? ? ?].
functional_eval_rewrite_clear.
specialize (H4 _ _ _ eq_refl H7).
specialize (H5 _ _ _ eq_refl H9).
congruence.
Qed.

Expand Down Expand Up @@ -136,44 +136,52 @@ Ltac functional_per_univ_elem_rewrite_clear :=

Lemma per_univ_elem_sym : forall i A B R,
per_univ_elem i A B R ->
exists R', per_univ_elem i B A R' /\ (forall a b, {{ Dom a ≈ b ∈ R }} <-> {{ Dom b ≈ a ∈ R' }}).
per_univ_elem i B A R /\ (forall a b, {{ Dom a ≈ b ∈ R }} <-> {{ Dom b ≈ a ∈ R }}).
Proof.
intros. induction H using per_univ_elem_ind; subst.
- exists (per_univ j'). split.
- split.
+ apply per_univ_elem_core_univ'; trivial.
+ intros. split; intros HD; destruct HD.
* specialize (H1 _ _ _ H0).
firstorder.
* specialize (H1 _ _ _ H0).
firstorder.
- exists per_nat. split.
- split.
+ econstructor.
+ intros; split; mauto.
- destruct IHper_univ_elem as [in_rel' [? ?]].
setoid_rewrite rel_mod_eval_simp_ex in H0.
repeat setoid_rewrite dep_functional_choice_equiv in H0.
destruct H0 as [out_rel' ?].
assert (forall a b : domain, in_rel' a b -> in_rel b a) as Hconv by firstorder.
assert (forall a b : domain, in_rel a b -> in_rel' b a) as Hconv' by firstorder.
setoid_rewrite H1.
exists (fun f f' => forall (c c' : domain) (equiv_c_c' : in_rel' c c'), rel_mod_app (out_rel' c' c (Hconv _ _ equiv_c_c')) f c f' c').
- destruct IHper_univ_elem as [? ?].
setoid_rewrite H2.
split.
+ per_univ_elem_econstructor; eauto.
* intros.
destruct (H0 _ _ (Hconv _ _ equiv_c_c')) as [? ? ? ? [? [? ?]]].
intros.
assert (equiv_c'_c : in_rel c' c) by firstorder.
assert (equiv_c_c : in_rel c c) by (etransitivity; eassumption).
destruct (H1 _ _ equiv_c_c') as [? ? ? ? [? [? ?]]].
destruct (H1 _ _ equiv_c'_c) as [? ? ? ? [? [? ?]]].
destruct (H1 _ _ equiv_c_c) as [? ? ? ? [? [? ?]]].
econstructor; eauto.
functional_eval_rewrite_clear.
per_univ_elem_right_irrel_rewrite.
congruence.

+ assert (forall a b : domain,
(forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app (out_rel c c' equiv_c_c') a c b c') ->
(forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app (out_rel c c' equiv_c_c') b c a c')). {
intros.
assert (equiv_c'_c : in_rel c' c) by firstorder.
assert (equiv_c_c : in_rel c c) by (etransitivity; eassumption).
destruct (H1 _ _ equiv_c_c') as [? ? ? ? [? [? ?]]].
destruct (H1 _ _ equiv_c'_c) as [? ? ? ? [? [? ?]]].
destruct (H1 _ _ equiv_c_c) as [? ? ? ? [? [? ?]]].
destruct (H5 _ _ equiv_c'_c) as [? ? ? ? ?].
functional_eval_rewrite_clear.
per_univ_elem_right_irrel_rewrite.
econstructor; eauto.
apply H7.
* auto.
+ split; intros.
* destruct (H0 _ _ (Hconv _ _ equiv_c_c')) as [? ? ? ? [? [? ?]]].
specialize (H4 _ _ (Hconv c c' equiv_c_c')) as [].
econstructor; firstorder eauto.
* destruct (H0 _ _ equiv_c_c') as [? ? ? ? [? [? ?]]].
specialize (H4 _ _ (Hconv' _ _ equiv_c_c')) as [].
econstructor; firstorder eauto.
replace (Hconv c' c (Hconv' c c' equiv_c_c')) with equiv_c_c' in H11 by apply proof_irrelevance.
rewrite H17, H16.
firstorder.
- exists per_ne. split.
}
firstorder.
- split.
+ econstructor.
+ intros; split; mauto.
Qed.
Expand All @@ -183,95 +191,103 @@ Lemma per_univ_elem_left_irrel : forall i A B R A' R',
per_univ_elem i A' B R' ->
R = R'.
Proof.
intros * [? []]%per_univ_elem_sym [? []]%per_univ_elem_sym.
per_univ_elem_right_irrel_rewrite.
extensionality a.
extensionality b.
specialize (H0 a b).
specialize (H2 a b).
apply propositional_extensionality; firstorder.
intros.
apply per_univ_elem_sym in H.
apply per_univ_elem_sym in H0.
destruct_all.
eauto using per_univ_elem_right_irrel.
Qed.

Ltac per_univ_elem_left_irrel_rewrite :=
repeat match goal with
| H1 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }}, H2 : {{ DF ~?A' ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }} |- _ =>
mark H2
| H1 : {{ DF ~?A ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }}, H2 : {{ DF ~?A' ≈ ~?B ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
assert (R2 = R1) by (eapply per_univ_elem_left_irrel; eassumption); subst; mark H2
end; unmark_all.
Lemma per_univ_elem_cross_irrel1 : forall i A B R B' R',
per_univ_elem i A B R ->
per_univ_elem i B' A R' ->
R = R'.
Proof.
intros.
apply per_univ_elem_sym in H0.
destruct_all.
eauto using per_univ_elem_right_irrel.
Qed.

Ltac per_univ_elem_irrel_rewrite := functional_per_univ_elem_rewrite_clear; per_univ_elem_right_irrel_rewrite; per_univ_elem_left_irrel_rewrite.
Lemma per_univ_elem_cross_irrel2 : forall i A B R A' R',
per_univ_elem i A B R ->
per_univ_elem i B A' R' ->
R = R'.
Proof.
intros.
apply per_univ_elem_sym in H.
destruct_all.
eauto using per_univ_elem_right_irrel.
Qed.

HuStmpHrrr marked this conversation as resolved.
Show resolved Hide resolved
Lemma per_univ_elem_trans : forall i A1 A2 R1,
per_univ_elem i A1 A2 R1 ->
forall A3 R2,
per_univ_elem i A2 A3 R2 ->
exists R3, per_univ_elem i A1 A3 R3 /\ (forall a1 a2 a3, R1 a1 a2 -> R2 a2 a3 -> R3 a1 a3).
Ltac do_per_univ_elem_irrel_rewrite1 :=
match goal with
| H1 : {{ DF ~?A ≈ ~_ ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ~?A ≈ ~_ ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
tryif unify R1 R2 then fail else
(let H := fresh "H" in assert (R1 = R2) as H by (eapply per_univ_elem_right_irrel; eassumption); subst;
try rewrite <- H in *)
| H1 : {{ DF ~_ ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ~_ ≈ ~?B ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
tryif unify R1 R2 then fail else
(let H := fresh "H" in assert (R1 = R2) as H by (eapply per_univ_elem_left_irrel; eassumption); subst;
try rewrite <- H in *)
| H1 : {{ DF ~?A ≈ ~_ ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ~_ ≈ ~?A ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
tryif unify R1 R2 then fail else
(let H := fresh "H" in assert (R1 = R2) as H by (eapply per_univ_elem_cross_irrel1; eassumption); subst;
try rewrite <- H in *)
| H1 : {{ DF ~_ ≈ ~?B ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ~?B ≈ ~_ ∈ per_univ_elem ?i ↘ ?R2 }} |- _ =>
tryif unify R1 R2 then fail else
(let H := fresh "H" in assert (R1 = R2) as H by (eapply per_univ_elem_cross_irrel2; eassumption); subst;
try rewrite <- H in *)
end.
HuStmpHrrr marked this conversation as resolved.
Show resolved Hide resolved

Ltac do_per_univ_elem_irrel_rewrite :=
repeat do_per_univ_elem_irrel_rewrite1.

Ltac per_univ_elem_irrel_rewrite :=
functional_eval_rewrite_clear;
do_per_univ_elem_irrel_rewrite;
clear_dups.

Lemma per_univ_elem_trans : forall i A1 A2 R,
per_univ_elem i A1 A2 R ->
forall A3,
per_univ_elem i A2 A3 R ->
per_univ_elem i A1 A3 R /\ (forall a1 a2 a3, R a1 a2 -> R a2 a3 -> R a1 a3).
Proof with solve [mauto].
induction 1 using per_univ_elem_ind; intros * HT2;
invert_per_univ_elem HT2; clear HT2.
- exists (per_univ j'0).
split; mauto.
- split; mauto.
intros.
destruct H0, H2.
destruct (H1 _ _ _ H0 _ _ H2) as [? [? ?]].
econstructor...
- exists per_nat.
split; try econstructor...
- rename R2 into elem_rel0.
destruct (IHper_univ_elem _ _ equiv_a_a') as [in_rel3 [? in_rel_trans]].
per_univ_elem_irrel_rewrite.
pose proof (per_univ_elem_sym _ _ _ _ H) as [in_rel' [? in_rel_sym]].
specialize (IHper_univ_elem _ _ H3) as [in_rel'' [? _]].
per_univ_elem_irrel_rewrite.
rename in_rel0 into in_rel.
assert (in_rel_refl : forall c c', in_rel c c' -> in_rel c' c').
{
intros.
assert (equiv_c'_c : in_rel c' c) by (destruct in_rel_sym with c c'; mauto)...
}
assert (forall (c c' : domain) (equiv_c_c' : in_rel c c'),
exists R3,
rel_mod_eval
(fun (x y : domain) (R : relation domain) =>
per_univ_elem i x y R)
B d{{{ p ↦ c }}} B'0 d{{{ p'0 ↦ c' }}} R3
/\ (forall c'' (equiv_c_c'' : in_rel c c'') (equiv_c''_c' : in_rel c'' c') b0 b1 b2,
out_rel _ _ equiv_c_c'' b0 b1 -> out_rel0 _ _ equiv_c''_c' b1 b2 -> R3 b0 b2)).
{
intros.
assert (equiv_c'_c' : in_rel c' c') by mauto.
destruct (H0 _ _ equiv_c_c') as [? ? ? ? []].
destruct (H7 _ _ equiv_c'_c') as [].
functional_eval_rewrite_clear.
destruct (H10 _ _ H13) as [R []].
exists R.
split.
- econstructor...
- intros.
specialize (H0 _ _ equiv_c_c'') as [? ? ? ? []].
specialize (H7 _ _ equiv_c''_c') as [].
functional_eval_rewrite_clear.
specialize (H19 _ _ H21) as [R' []].
per_univ_elem_irrel_rewrite.
eapply H7...
}
repeat setoid_rewrite dep_functional_choice_equiv in H5.
destruct H5 as [out_rel3 ?].
exists (fun f f' => forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app (out_rel3 c c' equiv_c_c') f c f' c').
destruct (H1 _ _ _ H0 _ H2) as [? ?].
econstructor...
- split; try econstructor...
- per_univ_elem_irrel_rewrite.
specialize (IHper_univ_elem _ equiv_a_a') as [? _].
split.
+ per_univ_elem_econstructor; mauto.
intros.
specialize (H5 _ _ equiv_c_c') as []...
+ intros.
assert (equiv_c'_c' : in_rel c' c') by mauto.
rewrite H1 in H6.
rewrite H8 in H9.
specialize (H6 _ _ equiv_c_c') as [].
assert (equiv_c_c : in_rel c c) by (etransitivity; [ | symmetry]; eassumption).
specialize (H1 _ _ equiv_c_c) as [? ? ? ? [? ?]].
specialize (H9 _ _ equiv_c_c') as [].
per_univ_elem_irrel_rewrite.
econstructor; eauto. firstorder.
+ setoid_rewrite H2.
intros.
assert (equiv_c'_c' : in_rel c' c') by (etransitivity; [symmetry | ]; eassumption).
destruct (H1 _ _ equiv_c_c') as [? ? ? ? [? ?]].
specialize (H1 _ _ equiv_c'_c') as [? ? ? ? [? ?]].
specialize (H9 _ _ equiv_c'_c') as [].
functional_eval_rewrite_clear.
specialize (H5 _ _ equiv_c_c') as [].
econstructor...
- exists per_ne.
split; try per_univ_elem_econstructor...
specialize (H3 _ _ equiv_c_c') as [].
specialize (H4 _ _ equiv_c'_c') as [].
per_univ_elem_irrel_rewrite.
econstructor; eauto.
firstorder.

- split; try per_univ_elem_econstructor...
Qed.
Loading
Loading