-
Notifications
You must be signed in to change notification settings - Fork 127
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add version of experiments that uses the parameters chosen in paper i…
…nstead of doing parameter search
- Loading branch information
Showing
4 changed files
with
243 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import copy | ||
|
||
import training | ||
|
||
params = {} | ||
|
||
# settings related to dataset | ||
params['data_name'] = 'DiscreteSpectrumExample' | ||
params['data_train_len'] = 1 | ||
params['len_time'] = 51 | ||
n = 2 # dimension of system (and input layer) | ||
num_initial_conditions = 5000 # per training file | ||
params['delta_t'] = 0.02 | ||
|
||
# settings related to saving results | ||
params['folder_name'] = 'exp1_best' | ||
|
||
# settings related to network architecture | ||
params['num_real'] = 2 | ||
params['num_complex_pairs'] = 0 | ||
params['num_evals'] = 2 | ||
k = params['num_evals'] # dimension of y-coordinates | ||
w = 30 | ||
params['widths'] = [2, w, w, k, k, w, w, 2] | ||
wo = 10 | ||
params['hidden_widths_omega'] = [wo, wo, wo] | ||
|
||
# settings related to loss function | ||
params['num_shifts'] = 30 | ||
params['num_shifts_middle'] = params['len_time'] - 1 | ||
max_shifts = max(params['num_shifts'], params['num_shifts_middle']) | ||
num_examples = num_initial_conditions * (params['len_time'] - max_shifts) | ||
params['recon_lam'] = .1 | ||
params['Linf_lam'] = 10 ** (-7) | ||
params['L1_lam'] = 0.0 | ||
params['L2_lam'] = 10 ** (-15) | ||
params['auto_first'] = 0 | ||
|
||
# settings related to the training | ||
params['num_passes_per_file'] = 15 * 6 * 10 | ||
params['num_steps_per_batch'] = 2 | ||
params['learning_rate'] = 10 ** (-3) | ||
params['batch_size'] = 256 | ||
steps_to_see_all = num_examples / params['batch_size'] | ||
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch'] | ||
|
||
# settings related to the timing | ||
params['max_time'] = 4 * 60 * 60 # 4 hours | ||
params['min_5min'] = .5 | ||
params['min_20min'] = .0004 | ||
params['min_40min'] = .00008 | ||
params['min_1hr'] = .00003 | ||
params['min_2hr'] = .00001 | ||
params['min_3hr'] = .000006 | ||
params['min_halfway'] = .000006 | ||
|
||
for count in range(200): # loop to do random experiments | ||
training.main_exp(copy.deepcopy(params)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import copy | ||
|
||
import training | ||
|
||
params = {} | ||
|
||
# settings related to dataset | ||
params['data_name'] = 'FluidFlowBox' | ||
params['data_train_len'] = 4 | ||
params['len_time'] = 101 | ||
n = 3 # dimension of system (and input layer) | ||
num_initial_conditions = 5000 # per training file | ||
params['delta_t'] = 0.01 | ||
|
||
# settings related to saving results | ||
params['folder_name'] = 'exp4_best' | ||
|
||
# settings related to network architecture | ||
params['num_real'] = 1 | ||
params['num_complex_pairs'] = 1 | ||
params['num_evals'] = 3 | ||
k = params['num_evals'] # dimension of y-coordinates | ||
w = 130 | ||
params['widths'] = [3, w, k, k, w, 3] | ||
wo = 20 | ||
params['hidden_widths_omega'] = [wo, wo] | ||
|
||
# defaults related to initialization of parameters | ||
params['dist_weights'] = 'dl' | ||
params['dist_weights_omega'] = 'dl' | ||
|
||
# settings related to loss function | ||
params['num_shifts'] = 30 | ||
params['num_shifts_middle'] = params['len_time'] - 1 | ||
max_shifts = max(params['num_shifts'], params['num_shifts_middle']) | ||
num_examples = num_initial_conditions * (params['len_time'] - max_shifts) | ||
params['recon_lam'] = .1 | ||
params['Linf_lam'] = 10 ** (-9) | ||
params['L1_lam'] = 0.0 | ||
params['L2_lam'] = 10 ** (-13) | ||
params['auto_first'] = 1 | ||
|
||
# settings related to training | ||
params['num_passes_per_file'] = 15 * 6 * 10 | ||
params['num_steps_per_batch'] = 2 | ||
params['learning_rate'] = 10 ** (-3) | ||
params['batch_size'] = 128 | ||
steps_to_see_all = num_examples / params['batch_size'] | ||
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch'] | ||
|
||
# settings related to timing | ||
params['max_time'] = 6 * 60 * 60 # 6 hours | ||
params['min_5min'] = .45 | ||
params['min_20min'] = .005 | ||
params['min_40min'] = .0005 | ||
params['min_1hr'] = .00025 | ||
params['min_2hr'] = .00005 | ||
params['min_3hr'] = .000007 | ||
params['min_4hr'] = .000005 | ||
params['min_halfway'] = 1 | ||
|
||
for count in range(200): # loop to do random experiments | ||
training.main_exp(copy.deepcopy(params)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import copy | ||
|
||
import training | ||
|
||
params = {} | ||
|
||
# settings related to dataset | ||
params['data_name'] = 'FluidFlowOnAttractor' | ||
params['data_train_len'] = 3 | ||
params['len_time'] = 121 | ||
n = 3 # dimension of system (and input layer) | ||
num_initial_conditions = 5000 # per training file | ||
params['delta_t'] = 0.05 | ||
|
||
# settings related to saving results | ||
params['folder_name'] = 'exp3_best' | ||
|
||
# settings related to network architecture | ||
params['num_real'] = 0 | ||
params['num_complex_pairs'] = 1 | ||
params['num_evals'] = 2 | ||
k = params['num_evals'] # dimension of y-coordinates | ||
w = 105 | ||
params['widths'] = [3, w, k, k, w, 3] | ||
wo = 300 | ||
params['hidden_widths_omega'] = [wo, ] | ||
|
||
# settings related to loss function | ||
params['num_shifts'] = 30 | ||
params['num_shifts_middle'] = params['len_time'] - 1 | ||
max_shifts = max(params['num_shifts'], params['num_shifts_middle']) | ||
num_examples = num_initial_conditions * (params['len_time'] - max_shifts) | ||
params['recon_lam'] = .1 | ||
params['Linf_lam'] = 10 ** (-7) | ||
params['L1_lam'] = 0.0 | ||
params['L2_lam'] = 10 ** (-13) | ||
params['auto_first'] = 1 | ||
|
||
# settings related to training | ||
params['num_passes_per_file'] = 15 * 6 * 10 | ||
params['num_steps_per_batch'] = 2 | ||
params['learning_rate'] = 10 ** (-3) | ||
params['batch_size'] = 256 | ||
steps_to_see_all = num_examples / params['batch_size'] | ||
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch'] | ||
|
||
# settings related to timing | ||
params['max_time'] = 6 * 60 * 60 # 6 hours | ||
params['min_5min'] = .45 | ||
params['min_20min'] = .001 | ||
params['min_40min'] = .0005 | ||
params['min_1hr'] = .00025 | ||
params['min_2hr'] = .00005 | ||
params['min_3hr'] = .000005 | ||
params['min_4hr'] = .0000007 | ||
params['min_halfway'] = 1 | ||
|
||
for count in range(200): # loop to do random experiments | ||
training.main_exp(copy.deepcopy(params)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import copy | ||
|
||
import training | ||
|
||
params = {} | ||
|
||
# settings related to dataset | ||
params['data_name'] = 'Pendulum' | ||
params['data_train_len'] = 3 | ||
params['len_time'] = 51 | ||
n = 2 # dimension of system (and input layer) | ||
num_initial_conditions = 5000 # per training file | ||
params['delta_t'] = 0.02 | ||
|
||
# settings related to saving results | ||
params['folder_name'] = 'exp2_best' | ||
|
||
# settings related to network architecture | ||
params['num_real'] = 0 | ||
params['num_complex_pairs'] = 1 | ||
params['num_evals'] = 2 | ||
k = params['num_evals'] # dimension of y-coordinates | ||
w = 80 | ||
params['widths'] = [2, w, w, k, k, w, w, 2] | ||
wo = 170 | ||
params['hidden_widths_omega'] = [wo, ] | ||
|
||
# defaults related to initialization of parameters | ||
params['dist_weights'] = 'dl' | ||
params['dist_weights_omega'] = 'dl' | ||
|
||
# settings related to loss function | ||
params['num_shifts'] = 30 | ||
params['num_shifts_middle'] = params['len_time'] - 1 | ||
max_shifts = max(params['num_shifts'], params['num_shifts_middle']) | ||
num_examples = num_initial_conditions * (params['len_time'] - max_shifts) | ||
params['recon_lam'] = .001 | ||
params['Linf_lam'] = 10 ** (-9) | ||
params['L1_lam'] = 0.0 | ||
params['L2_lam'] = 10 ** (-14) | ||
params['auto_first'] = 1 | ||
|
||
# settings related to training | ||
params['num_passes_per_file'] = 15 * 6 * 50 | ||
params['num_steps_per_batch'] = 2 | ||
params['learning_rate'] = 10 ** (-3) | ||
params['batch_size'] = 128 | ||
steps_to_see_all = num_examples / params['batch_size'] | ||
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch'] | ||
|
||
# settings related to timing | ||
params['max_time'] = 6 * 60 * 60 # 6 hours | ||
params['min_5min'] = .25 | ||
params['min_20min'] = .02 | ||
params['min_40min'] = .002 | ||
params['min_1hr'] = .0002 | ||
params['min_2hr'] = .00002 | ||
params['min_3hr'] = .000004 | ||
params['min_4hr'] = .0000005 | ||
params['min_halfway'] = 1 | ||
|
||
for count in range(200): # loop to do random experiments | ||
training.main_exp(copy.deepcopy(params)) |