Skip to content

Commit

Permalink
add version of experiments that uses the parameters chosen in paper i…
Browse files Browse the repository at this point in the history
…nstead of doing parameter search
  • Loading branch information
BethanyL committed Apr 16, 2018
1 parent 6630972 commit 0e5d117
Show file tree
Hide file tree
Showing 4 changed files with 243 additions and 0 deletions.
58 changes: 58 additions & 0 deletions DiscreteSpectrumExampleExperimentBestParams.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import copy

import training

params = {}

# settings related to dataset
params['data_name'] = 'DiscreteSpectrumExample'
params['data_train_len'] = 1
params['len_time'] = 51
n = 2 # dimension of system (and input layer)
num_initial_conditions = 5000 # per training file
params['delta_t'] = 0.02

# settings related to saving results
params['folder_name'] = 'exp1_best'

# settings related to network architecture
params['num_real'] = 2
params['num_complex_pairs'] = 0
params['num_evals'] = 2
k = params['num_evals'] # dimension of y-coordinates
w = 30
params['widths'] = [2, w, w, k, k, w, w, 2]
wo = 10
params['hidden_widths_omega'] = [wo, wo, wo]

# settings related to loss function
params['num_shifts'] = 30
params['num_shifts_middle'] = params['len_time'] - 1
max_shifts = max(params['num_shifts'], params['num_shifts_middle'])
num_examples = num_initial_conditions * (params['len_time'] - max_shifts)
params['recon_lam'] = .1
params['Linf_lam'] = 10 ** (-7)
params['L1_lam'] = 0.0
params['L2_lam'] = 10 ** (-15)
params['auto_first'] = 0

# settings related to the training
params['num_passes_per_file'] = 15 * 6 * 10
params['num_steps_per_batch'] = 2
params['learning_rate'] = 10 ** (-3)
params['batch_size'] = 256
steps_to_see_all = num_examples / params['batch_size']
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch']

# settings related to the timing
params['max_time'] = 4 * 60 * 60 # 4 hours
params['min_5min'] = .5
params['min_20min'] = .0004
params['min_40min'] = .00008
params['min_1hr'] = .00003
params['min_2hr'] = .00001
params['min_3hr'] = .000006
params['min_halfway'] = .000006

for count in range(200): # loop to do random experiments
training.main_exp(copy.deepcopy(params))
63 changes: 63 additions & 0 deletions FluidFlowBoxExperimentBestParams.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import copy

import training

params = {}

# settings related to dataset
params['data_name'] = 'FluidFlowBox'
params['data_train_len'] = 4
params['len_time'] = 101
n = 3 # dimension of system (and input layer)
num_initial_conditions = 5000 # per training file
params['delta_t'] = 0.01

# settings related to saving results
params['folder_name'] = 'exp4_best'

# settings related to network architecture
params['num_real'] = 1
params['num_complex_pairs'] = 1
params['num_evals'] = 3
k = params['num_evals'] # dimension of y-coordinates
w = 130
params['widths'] = [3, w, k, k, w, 3]
wo = 20
params['hidden_widths_omega'] = [wo, wo]

# defaults related to initialization of parameters
params['dist_weights'] = 'dl'
params['dist_weights_omega'] = 'dl'

# settings related to loss function
params['num_shifts'] = 30
params['num_shifts_middle'] = params['len_time'] - 1
max_shifts = max(params['num_shifts'], params['num_shifts_middle'])
num_examples = num_initial_conditions * (params['len_time'] - max_shifts)
params['recon_lam'] = .1
params['Linf_lam'] = 10 ** (-9)
params['L1_lam'] = 0.0
params['L2_lam'] = 10 ** (-13)
params['auto_first'] = 1

# settings related to training
params['num_passes_per_file'] = 15 * 6 * 10
params['num_steps_per_batch'] = 2
params['learning_rate'] = 10 ** (-3)
params['batch_size'] = 128
steps_to_see_all = num_examples / params['batch_size']
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch']

# settings related to timing
params['max_time'] = 6 * 60 * 60 # 6 hours
params['min_5min'] = .45
params['min_20min'] = .005
params['min_40min'] = .0005
params['min_1hr'] = .00025
params['min_2hr'] = .00005
params['min_3hr'] = .000007
params['min_4hr'] = .000005
params['min_halfway'] = 1

for count in range(200): # loop to do random experiments
training.main_exp(copy.deepcopy(params))
59 changes: 59 additions & 0 deletions FluidFlowOnAttractorExperimentBestParams.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import copy

import training

params = {}

# settings related to dataset
params['data_name'] = 'FluidFlowOnAttractor'
params['data_train_len'] = 3
params['len_time'] = 121
n = 3 # dimension of system (and input layer)
num_initial_conditions = 5000 # per training file
params['delta_t'] = 0.05

# settings related to saving results
params['folder_name'] = 'exp3_best'

# settings related to network architecture
params['num_real'] = 0
params['num_complex_pairs'] = 1
params['num_evals'] = 2
k = params['num_evals'] # dimension of y-coordinates
w = 105
params['widths'] = [3, w, k, k, w, 3]
wo = 300
params['hidden_widths_omega'] = [wo, ]

# settings related to loss function
params['num_shifts'] = 30
params['num_shifts_middle'] = params['len_time'] - 1
max_shifts = max(params['num_shifts'], params['num_shifts_middle'])
num_examples = num_initial_conditions * (params['len_time'] - max_shifts)
params['recon_lam'] = .1
params['Linf_lam'] = 10 ** (-7)
params['L1_lam'] = 0.0
params['L2_lam'] = 10 ** (-13)
params['auto_first'] = 1

# settings related to training
params['num_passes_per_file'] = 15 * 6 * 10
params['num_steps_per_batch'] = 2
params['learning_rate'] = 10 ** (-3)
params['batch_size'] = 256
steps_to_see_all = num_examples / params['batch_size']
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch']

# settings related to timing
params['max_time'] = 6 * 60 * 60 # 6 hours
params['min_5min'] = .45
params['min_20min'] = .001
params['min_40min'] = .0005
params['min_1hr'] = .00025
params['min_2hr'] = .00005
params['min_3hr'] = .000005
params['min_4hr'] = .0000007
params['min_halfway'] = 1

for count in range(200): # loop to do random experiments
training.main_exp(copy.deepcopy(params))
63 changes: 63 additions & 0 deletions PendulumExperimentBestParams.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import copy

import training

params = {}

# settings related to dataset
params['data_name'] = 'Pendulum'
params['data_train_len'] = 3
params['len_time'] = 51
n = 2 # dimension of system (and input layer)
num_initial_conditions = 5000 # per training file
params['delta_t'] = 0.02

# settings related to saving results
params['folder_name'] = 'exp2_best'

# settings related to network architecture
params['num_real'] = 0
params['num_complex_pairs'] = 1
params['num_evals'] = 2
k = params['num_evals'] # dimension of y-coordinates
w = 80
params['widths'] = [2, w, w, k, k, w, w, 2]
wo = 170
params['hidden_widths_omega'] = [wo, ]

# defaults related to initialization of parameters
params['dist_weights'] = 'dl'
params['dist_weights_omega'] = 'dl'

# settings related to loss function
params['num_shifts'] = 30
params['num_shifts_middle'] = params['len_time'] - 1
max_shifts = max(params['num_shifts'], params['num_shifts_middle'])
num_examples = num_initial_conditions * (params['len_time'] - max_shifts)
params['recon_lam'] = .001
params['Linf_lam'] = 10 ** (-9)
params['L1_lam'] = 0.0
params['L2_lam'] = 10 ** (-14)
params['auto_first'] = 1

# settings related to training
params['num_passes_per_file'] = 15 * 6 * 50
params['num_steps_per_batch'] = 2
params['learning_rate'] = 10 ** (-3)
params['batch_size'] = 128
steps_to_see_all = num_examples / params['batch_size']
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch']

# settings related to timing
params['max_time'] = 6 * 60 * 60 # 6 hours
params['min_5min'] = .25
params['min_20min'] = .02
params['min_40min'] = .002
params['min_1hr'] = .0002
params['min_2hr'] = .00002
params['min_3hr'] = .000004
params['min_4hr'] = .0000005
params['min_halfway'] = 1

for count in range(200): # loop to do random experiments
training.main_exp(copy.deepcopy(params))

0 comments on commit 0e5d117

Please sign in to comment.