-
Notifications
You must be signed in to change notification settings - Fork 124
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
upload four experiments from v2 of paper
- Loading branch information
Showing
4 changed files
with
340 additions
and
107 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,49 +1,101 @@ | ||
import copy | ||
import random as r | ||
|
||
import training | ||
|
||
params = {} | ||
|
||
# settings related to dataset | ||
params['data_name'] = 'DiscreteSpectrumExample' | ||
params['len_time'] = 51 | ||
n = 2 # dimension of system (and input layer) | ||
params['data_train_len'] = 10 | ||
num_initial_conditions = 29400 # per training file (10 training data files) | ||
params['delta_t'] = 0.02 | ||
|
||
# settings related to saving results | ||
params['folder_name'] = 'exp1' | ||
|
||
# settings related to network architecture | ||
w = 100 # width of hidden layers in encoder and decoder | ||
k = 2 # dimension of y-coordinates | ||
params['widths'] = [n, w, w, w, k, k, w, w, w, n] | ||
params['widths_omega'] = [2, w, w, w, 1] | ||
|
||
# settings related to loss function | ||
params['num_shifts'] = 3 | ||
params['Linf_lam'] = 10 ** (-6) | ||
|
||
# settings related to the training | ||
params['num_passes_per_file'] = 15 * 4 | ||
params['num_steps_per_batch'] = 2 | ||
params['learning_rate'] = 10 ** (-3) | ||
|
||
# settings related to the timing | ||
params['max_time'] = 4 * 60 * 60 # 4 hours | ||
params['min_halfway'] = 10 ** (-5) | ||
|
||
for count in range(200): # loop to do random experiments | ||
params['num_shifts_middle'] = r.randint(5, params['len_time'] - 1) | ||
max_shifts = max(params['num_shifts'], params['num_shifts_middle']) | ||
num_examples = num_initial_conditions * (params['len_time'] - max_shifts) | ||
params['batch_size'] = int(2 ** (r.uniform(6, 9))) | ||
steps_to_see_all = num_examples / params['batch_size'] | ||
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch'] | ||
|
||
params['L2_lam'] = 10 ** (-r.uniform(12, 18)) | ||
params['L1_lam'] = 10 ** (-r.uniform(14, 18)) | ||
|
||
training.main_exp(copy.deepcopy(params)) | ||
import copy | ||
import random as r | ||
|
||
import numpy as np | ||
|
||
import training | ||
|
||
params = {} | ||
|
||
# settings related to dataset | ||
params['data_name'] = 'DiscreteSpectrumExample' | ||
params['len_time'] = 51 | ||
n = 2 # dimension of system (and input layer) | ||
num_initial_conditions = 5000 # per training file | ||
params['delta_t'] = 0.02 | ||
|
||
# settings related to saving results | ||
params['folder_name'] = 'exp1' | ||
|
||
# settings related to network architecture | ||
params['num_real'] = 2 | ||
params['num_complex_pairs'] = 0 | ||
params['num_evals'] = 2 | ||
k = params['num_evals'] # dimension of y-coordinates | ||
|
||
# settings related to loss function | ||
params['num_shifts'] = 30 | ||
params['num_shifts_middle'] = params['len_time'] - 1 | ||
max_shifts = max(params['num_shifts'], params['num_shifts_middle']) | ||
num_examples = num_initial_conditions * (params['len_time'] - max_shifts) | ||
params['recon_lam'] = .1 | ||
params['L1_lam'] = 0.0 | ||
|
||
# settings related to the training | ||
params['num_passes_per_file'] = 15 * 6 * 10 | ||
params['num_steps_per_batch'] = 2 | ||
params['learning_rate'] = 10 ** (-3) | ||
|
||
# settings related to the timing | ||
params['max_time'] = 4 * 60 * 60 # 4 hours | ||
params['min_5min'] = .5 | ||
params['min_20min'] = .0004 | ||
params['min_40min'] = .00008 | ||
params['min_1hr'] = .00003 | ||
params['min_2hr'] = .00001 | ||
params['min_3hr'] = .000006 | ||
params['min_halfway'] = .000006 | ||
|
||
for count in range(200): # loop to do random experiments | ||
params['data_train_len'] = r.randint(1, 3) | ||
params['batch_size'] = int(2 ** (r.randint(7, 9))) | ||
steps_to_see_all = num_examples / params['batch_size'] | ||
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch'] | ||
if r.random() < .5: | ||
params['auto_first'] = 1 | ||
else: | ||
params['auto_first'] = 0 | ||
|
||
params['L2_lam'] = 10 ** (-r.randint(13, 15)) | ||
if r.random() < .5: | ||
params['Linf_lam'] = 0.0 | ||
else: | ||
params['Linf_lam'] = 10 ** (-r.randint(6, 10)) | ||
|
||
d = r.randint(1, 4) | ||
if d == 1: | ||
wopts = np.arange(50, 160, 10) | ||
w = wopts[r.randint(0, len(wopts) - 1)] | ||
params['widths'] = [2, w, k, k, w, 2] | ||
elif d == 2: | ||
wopts = np.arange(15, 45, 5) | ||
w = wopts[r.randint(0, len(wopts) - 1)] | ||
params['widths'] = [2, w, w, k, k, w, w, 2] | ||
elif d == 3: | ||
wopts = np.arange(10, 25, 5) | ||
w = wopts[r.randint(0, len(wopts) - 1)] | ||
params['widths'] = [2, w, w, w, k, k, w, w, w, 2] | ||
elif d == 4: | ||
wopts = np.arange(10, 20, 5) | ||
w = wopts[r.randint(0, len(wopts) - 1)] | ||
params['widths'] = [2, w, w, w, w, k, k, w, w, w, w, 2] | ||
|
||
do = r.randint(1, 4) | ||
if do == 1: | ||
wopts = np.arange(20, 110, 10) | ||
wo = wopts[r.randint(0, len(wopts) - 1)] | ||
params['hidden_widths_omega'] = [wo, ] | ||
elif do == 2: | ||
wopts = np.arange(10, 25, 5) | ||
wo = wopts[r.randint(0, len(wopts) - 1)] | ||
params['hidden_widths_omega'] = [wo, wo] | ||
elif do == 3: | ||
wopts = np.arange(5, 20, 5) | ||
wo = wopts[r.randint(0, len(wopts) - 1)] | ||
params['hidden_widths_omega'] = [wo, wo, wo] | ||
elif do == 4: | ||
wopts = np.arange(5, 15, 5) | ||
wo = wopts[r.randint(0, len(wopts) - 1)] | ||
params['hidden_widths_omega'] = [wo, wo, wo, wo] | ||
|
||
training.main_exp(copy.deepcopy(params)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import copy | ||
import random as r | ||
|
||
import numpy as np | ||
|
||
import training | ||
|
||
params = {} | ||
|
||
# settings related to dataset | ||
params['data_name'] = 'FluidFlowBox' | ||
params['len_time'] = 101 | ||
n = 3 # dimension of system (and input layer) | ||
num_initial_conditions = 5000 # per training file | ||
params['delta_t'] = 0.01 | ||
|
||
# settings related to saving results | ||
params['folder_name'] = 'exp4' | ||
|
||
# settings related to network architecture | ||
params['num_real'] = 1 | ||
params['num_complex_pairs'] = 1 | ||
params['num_evals'] = 3 | ||
k = params['num_evals'] # dimension of y-coordinates | ||
|
||
# defaults related to initialization of parameters | ||
params['dist_weights'] = 'dl' | ||
params['dist_weights_omega'] = 'dl' | ||
|
||
# settings related to loss function | ||
params['num_shifts'] = 30 | ||
params['num_shifts_middle'] = params['len_time'] - 1 | ||
max_shifts = max(params['num_shifts'], params['num_shifts_middle']) | ||
num_examples = num_initial_conditions * (params['len_time'] - max_shifts) | ||
params['recon_lam'] = .1 | ||
params['L1_lam'] = 0.0 | ||
params['auto_first'] = 1 | ||
|
||
# settings related to training | ||
params['num_passes_per_file'] = 15 * 6 * 10 | ||
params['num_steps_per_batch'] = 2 | ||
params['learning_rate'] = 10 ** (-3) | ||
|
||
# settings related to timing | ||
params['max_time'] = 6 * 60 * 60 # 6 hours | ||
params['min_5min'] = .45 | ||
params['min_20min'] = .005 | ||
params['min_40min'] = .0005 | ||
params['min_1hr'] = .00025 | ||
params['min_2hr'] = .00005 | ||
params['min_3hr'] = .000007 | ||
params['min_4hr'] = .000005 | ||
params['min_halfway'] = 1 | ||
|
||
for count in range(200): # loop to do random experiments | ||
params['data_train_len'] = r.randint(1, 4) | ||
params['batch_size'] = int(2 ** (r.randint(7, 8))) | ||
steps_to_see_all = num_examples / params['batch_size'] | ||
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch'] | ||
params['L2_lam'] = 10 ** (-r.randint(13, 14)) | ||
params['Linf_lam'] = 10 ** (-r.randint(7, 9)) | ||
|
||
d = 1 | ||
wopts = np.arange(50, 200, 5) | ||
w = wopts[r.randint(0, len(wopts) - 1)] | ||
params['widths'] = [n, w, k, k, w, n] | ||
|
||
do = r.randint(1, 2) | ||
if do == 1: | ||
wopts = np.arange(20, 135, 5) | ||
wo = wopts[r.randint(0, len(wopts) - 1)] | ||
params['hidden_widths_omega'] = [wo, ] | ||
elif do == 2: | ||
wopts = np.arange(10, 30, 5) | ||
wo = wopts[r.randint(0, len(wopts) - 1)] | ||
params['hidden_widths_omega'] = [wo, wo] | ||
|
||
training.main_exp(copy.deepcopy(params)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import copy | ||
import random as r | ||
|
||
import numpy as np | ||
|
||
import training | ||
|
||
params = {} | ||
|
||
# settings related to dataset | ||
params['data_name'] = 'FluidFlowOnAttractor' | ||
params['len_time'] = 121 | ||
n = 3 # dimension of system (and input layer) | ||
num_initial_conditions = 5000 # per training file | ||
params['delta_t'] = 0.05 | ||
|
||
# settings related to saving results | ||
params['folder_name'] = 'exp3' | ||
|
||
# settings related to network architecture | ||
params['num_real'] = 0 | ||
params['num_complex_pairs'] = 1 | ||
params['num_evals'] = 2 | ||
k = params['num_evals'] # dimension of y-coordinates | ||
|
||
# settings related to loss function | ||
params['num_shifts'] = 30 | ||
params['num_shifts_middle'] = params['len_time'] - 1 | ||
max_shifts = max(params['num_shifts'], params['num_shifts_middle']) | ||
num_examples = num_initial_conditions * (params['len_time'] - max_shifts) | ||
params['recon_lam'] = .1 | ||
params['L1_lam'] = 0.0 | ||
params['auto_first'] = 1 | ||
|
||
# settings related to training | ||
params['num_passes_per_file'] = 15 * 6 * 10 | ||
params['num_steps_per_batch'] = 2 | ||
params['learning_rate'] = 10 ** (-3) | ||
|
||
# settings related to timing | ||
params['max_time'] = 6 * 60 * 60 # 6 hours | ||
params['min_5min'] = .45 | ||
params['min_20min'] = .001 | ||
params['min_40min'] = .0005 | ||
params['min_1hr'] = .00025 | ||
params['min_2hr'] = .00005 | ||
params['min_3hr'] = .000005 | ||
params['min_4hr'] = .0000007 | ||
params['min_halfway'] = 1 | ||
|
||
for count in range(200): # loop to do random experiments | ||
params['data_train_len'] = r.randint(1, 3) | ||
params['batch_size'] = int(2 ** (r.randint(7, 8))) | ||
steps_to_see_all = num_examples / params['batch_size'] | ||
params['num_steps_per_file_pass'] = (int(steps_to_see_all) + 1) * params['num_steps_per_batch'] | ||
params['L2_lam'] = 10 ** (-r.randint(13, 14)) | ||
params['Linf_lam'] = 10 ** (-r.randint(7, 10)) | ||
|
||
d = r.randint(1, 2) | ||
if d == 1: | ||
wopts = np.arange(70, 135, 5) | ||
w = wopts[r.randint(0, len(wopts) - 1)] | ||
params['widths'] = [n, w, k, k, w, n] | ||
elif d == 2: | ||
wopts = np.arange(15, 30, 5) | ||
w = wopts[r.randint(0, len(wopts) - 1)] | ||
params['widths'] = [n, w, w, k, k, w, w, n] | ||
do = r.randint(1, 2) | ||
if do == 1: | ||
wopts = np.arange(230, 450, 10) | ||
wo = wopts[r.randint(0, len(wopts) - 1)] | ||
params['hidden_widths_omega'] = [wo, ] | ||
elif do == 2: | ||
wopts = np.arange(25, 40, 5) | ||
wo = wopts[r.randint(0, len(wopts) - 1)] | ||
params['hidden_widths_omega'] = [wo, wo] | ||
|
||
training.main_exp(copy.deepcopy(params)) |
Oops, something went wrong.