Skip to content

Single Cell Variational Inference of the Dose Response (scVIDR) a VAE tool used to predict expression of chemcial perturbations across cell types.

License

Notifications You must be signed in to change notification settings

BhattacharyaLab/scVIDR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Developed by Omar Kana [email protected]

CLI integration by David Filipovic [email protected]

Maintained by David Filipovic [email protected]

scVIDR

Single Cell Variational Inference of the Dose Response (scVIDR) a variational autoencoder tool used to predict expression of chemcial perturbations across cell types.

DOI

Publication

Publication in Patterns

Installation

git clone https://github.com/BhattacharyaLab/scVIDR.git
cd scVIDR
conda create -n scVIDR python=3.8.5
conda activate scVIDR
pip3 install -r requirements.txt
pip3 install geomloss==0.2.5
pip install torch==1.8.1+cu111 torchaudio==0.8.1 torchvision==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

Data

To get the data directory for figure notebooks: https://drive.google.com/file/d/11fzDbp0B19Dy47MtD742Jl4Hz2bdSiiq/view?usp=sharing

Once you download data.zip copy it to scVIDR/data and unzip it there.

VAE model training (single- and multi- dose models)

To train a single dose VAE model run the `scvidr_train.py single_dose` command (Figure 2 of the manuscript).

To train a multi dose VAE model run the `scvidr_train.py multi_dose` command (Figure 3 of the manuscript).


Both types of models expect an AnnData file in the h5ad format as input. In addition to the scRNAseq data, the obs table is also expected to contain a dose and a cell type column.
The single dose model expects at least two distinct doses, whereas the multi dose model expects at least three.

Command arguments are the same for both types of models and are listed below.

 

usage: `scvidr_train.py {single_dose/multi_dose} [-h] [--dose_column DOSE_COLUMN] [--celltype_column CELLTYPE_COLUMN] [--test_celltype TEST_CELLTYPE] [--treated_dose CONTROL_DOSE] [--treated_dose TREATED_DOSE] [--celltypes_keep CELLTYPES_KEEP] h5ad_data_file model_path`

Train a VAE model applicable to scGen and scVIDR using a h5ad input dataset

positional arguments:

  h5ad_data_file        The data file containing the raw reads in h5ad format

  model_path            Path to the directory where the trained model will be saved

model arguments:

  -h, --help            show this help message and exit
  --dose_column DOSE_COLUMN
                        Name of the column within obs dataframe representing the dose (default "Dose")
  --celltype_column CELLTYPE_COLUMN
                        Name of the column within obs dataframe representing the cell type (default "celltype")
  --test_celltype TEST_CELLTYPE
                        Name of the cell type to be left out for testing - surround by quotation marks for cell types containing spaces (default "Hepatocytes - portal"
  --control_dose CONTROL_DOSE
                        Control dose (default "0")
  --treated_dose TREATED_DOSE
                        Treated dose (default "30")
  --celltypes_keep CELLTYPES_KEEP
                        Cell types to keep in the dataset during training/testing - either a file containing list of cell types (one cell type per line) or semicolon separated list of cell types (surround in quotation marks) - default all available cell types
                        (default "ALL")

To train all the single dose models for all individual cell types used in the manuscript execute

python scvidr_train.py single_dose --celltypes_keep ../metadata/liver_celltypes --test_celltype "Hepatocytes - portal" ../data/nault2021_singleDose.h5ad "../data/VAE_Binary_Prediction_Dioxin_5000g_Hepatocytes - central.pt/"
python scvidr_train.py single_dose --celltypes_keep ../metadata/liver_celltypes --test_celltype "Hepatocytes - central" ../data/nault2021_singleDose.h5ad "../data/VAE_Binary_Prediction_Dioxin_5000g_Hepatocytes - portal.pt/"
python scvidr_train.py single_dose --celltypes_keep ../metadata/liver_celltypes --test_celltype "Cholangiocytes" ../data/nault2021_singleDose.h5ad "../data/VAE_Binary_Prediction_Dioxin_5000g_Cholangiocytes.pt/"
python scvidr_train.py single_dose --celltypes_keep ../metadata/liver_celltypes --test_celltype "Stellate Cells" ../data/nault2021_singleDose.h5ad "../data/VAE_Binary_Prediction_Dioxin_5000g_Stellate Cells.pt/"
python scvidr_train.py single_dose --celltypes_keep ../metadata/liver_celltypes --test_celltype "Portal Fibroblasts" ../data/nault2021_singleDose.h5ad "../data/VAE_Binary_Prediction_Dioxin_5000g_Portal Fibroblasts.pt/"
python scvidr_train.py single_dose --celltypes_keep ../metadata/liver_celltypes --test_celltype "Endothelial Cells" ../data/nault2021_singleDose.h5ad "../data/VAE_Binary_Prediction_Dioxin_5000g_Endothelial Cells.pt/"

To train all the multi dose models for all individual cell types used in the manuscript execute

python scvidr_train.py multi_dose --control_dose 0.0 --celltypes_keep ../metadata/liver_celltypes --test_celltype "Hepatocytes - central" ../data/nault2021_multiDose.h5ad "../data/VAE_Cont_Prediction_Dioxin_5000g_Hepatocytes - central.pt/"
python scvidr_train.py multi_dose --control_dose 0.0 --celltypes_keep ../metadata/liver_celltypes --test_celltype "Hepatocytes - portal" ../data/nault2021_multiDose.h5ad "../data/VAE_Cont_Prediction_Dioxin_5000g_Hepatocytes - portal.pt/"
python scvidr_train.py multi_dose --control_dose 0.0 --celltypes_keep ../metadata/liver_celltypes --test_celltype "Cholangiocytes" ../data/nault2021_multiDose.h5ad "../data/VAE_Cont_Prediction_Dioxin_5000g_Cholangiocytes.pt/"
python scvidr_train.py multi_dose --control_dose 0.0 --celltypes_keep ../metadata/liver_celltypes --test_celltype "Stellate Cells" ../data/nault2021_multiDose.h5ad "../data/VAE_Cont_Prediction_Dioxin_5000g_Stellate Cells.pt/"
python scvidr_train.py multi_dose --control_dose 0.0 --celltypes_keep ../metadata/liver_celltypes --test_celltype "Portal Fibroblasts" ../data/nault2021_multiDose.h5ad "../data/VAE_Cont_Prediction_Dioxin_5000g_Portal Fibroblasts.pt/"
python scvidr_train.py multi_dose --control_dose 0.0 --celltypes_keep ../metadata/liver_celltypes --test_celltype "Endothelial Cells" ../data/nault2021_multiDose.h5ad "../data/VAE_Cont_Prediction_Dioxin_5000g_Endothelial Cells.pt/"

Note: all of these models are available pretrained (same names as listed above)

Single dose model prediction

usage: scvidr_predict.py single_dose [-h] [--model MODEL]
                                     [--dose_column DOSE_COLUMN]
                                     [--celltype_column CELLTYPE_COLUMN]
                                     [--test_celltype TEST_CELLTYPE]
                                     [--control_dose CONTROL_DOSE]
                                     [--treated_dose TREATED_DOSE]
                                     [--celltypes_keep CELLTYPES_KEEP]
                                     h5ad_data_file model_path output_path

Predict treatment condition using a pretrained scVIDR or scGEN model

positional arguments:

h5ad_data_file        The data file containing the raw reads in h5ad format
  model_path            Path to the directory where the trained model was
                        saved in the model training step
  output_path           Path to the driectory where the anndata will be output
                        to in an h5ad format

optional arguments:

  -h, --help            show this help message and exit
  --model MODEL         Use scVIDR or scGen for prediciton (defualt "scVIDR")
  --dose_column DOSE_COLUMN
                        Name of the column within obs dataframe representing
                        the dose (default "Dose")
  --celltype_column CELLTYPE_COLUMN
                        Name of the column within obs dataframe representing
                        the cell type (default "celltype")
  --test_celltype TEST_CELLTYPE
                        Name of the cell type to be left out for testing -
                        surround by quotation marks for cell types containing
                        spaces (default "Hepatocytes - portal"
  --control_dose CONTROL_DOSE
                        Control dose (default "0")
  --treated_dose TREATED_DOSE
                        Treated dose (default "30")
  --celltypes_keep CELLTYPES_KEEP
                        Cell types to keep in the dataset during
                        training/testing - either a file containing list of
                        cell types (one cell type per line) or semicolon
                        separated list of cell types (surround in quotation
                        marks) - default all available cell types (default
                        "ALL")

Example of single does prediction command:

python scvidr_predict.py single_dose ../data/nault2021_singleDose.h5ad ../data/VAE_Binary_Prediction_Dioxin_5000g_Hepatocytes\ -\ portal.pt/ ../data/SingleDose_TCDD \--model scVIDR --dose_column Dose --celltype_column celltype --test_celltype Hepatocytes - portal --control_dose 0 --treated_dose 30 --celltypes_keep ../metadata/liver_celltypes

Multi dose model prediction

usage: scvidr_predict.py multi_dose [-h] [--model MODEL]
                                    [--dose_column DOSE_COLUMN]
                                    [--celltype_column CELLTYPE_COLUMN]
                                    [--test_celltype TEST_CELLTYPE]
                                    [--control_dose CONTROL_DOSE]
                                    [--treated_dose TREATED_DOSE]
                                    [--celltypes_keep CELLTYPES_KEEP]
                                    h5ad_data_file model_path output_path

positional arguments:

  h5ad_data_file        The data file containing the raw reads in h5ad format
  model_path            Path to the directory where the trained model was
                        saved in the model training step
  output_path           Path to the driectory where the anndata will be output
                        to in an h5ad format

optional arguments:

  -h, --help            show this help message and exit
  --model MODEL         Use scVIDR or scGen for prediciton (defualt "scVIDR")
  --dose_column DOSE_COLUMN
                        Name of the column within obs dataframe representing
                        the dose (default "Dose")
  --celltype_column CELLTYPE_COLUMN
                        Name of the column within obs dataframe representing
                        the cell type (default "celltype")
  --test_celltype TEST_CELLTYPE
                        Name of the cell type to be left out for testing -
                        surround by quotation marks for cell types containing
                        spaces (default "Hepatocytes - portal"
  --control_dose CONTROL_DOSE
                        Control dose (default "0")
  --treated_dose TREATED_DOSE
                        Treated dose (default "30")
  --celltypes_keep CELLTYPES_KEEP
                        Cell types to keep in the dataset during
                        training/testing - either a file containing list of
                        cell types (one cell type per line) or semicolon
                        separated list of cell types (surround in quotation
                        marks) - default all available cell types (default
                        "ALL")

Example of multidose prediction command:

python scvidr_predict.py multi_dose ../data/nault2021_multiDose.h5ad ../data/VAE_Cont_Prediction_Dioxin_5000g_Hepatocytes\ -\ portal.pt/ ../data/MultiDose_TCDD \--model scVIDR --dose_column Dose --celltype_column celltype --test_celltype Hepatocytes - portal --control_dose 0.0 --treated_dose 30.0 --celltypes_keep ../metadata/liver_celltypes

Calculate Gene Scores

usage: scvidr_genescores.py [-h] [--dose_column DOSE_COLUMN]
                            [--celltype_column CELLTYPE_COLUMN]
                            [--test_celltype TEST_CELLTYPE]
                            [--control_dose CONTROL_DOSE]
                            [--treated_dose TREATED_DOSE]
                            [--celltypes_keep CELLTYPES_KEEP]
                            [--training_size TRAINING_SIZE]
                            h5ad_data_file model_path output_path

Interpret scVIDR predictions using ridge regression. Outputs CSV file of gene scores.

positional arguments:

  h5ad_data_file        The data file containing the raw reads in h5ad format
  model_path            Path to the directory where the trained model was
                        saved in the model training step
  output_path           Path to the driectory where the gene scores will be
                        saved as a csv file

optional arguments:

  -h, --help            show this help message and exit
  --dose_column DOSE_COLUMN
                        Name of the column within obs dataframe representing
                        the dose (default "Dose")
  --celltype_column CELLTYPE_COLUMN
                        Name of the column within obs dataframe representing
                        the cell type (default "celltype")
  --test_celltype TEST_CELLTYPE
                        Name of the cell type to be left out for testing -
                        surround by quotation marks for cell types containing
                        spaces (default "Hepatocytes - portal"
  --control_dose CONTROL_DOSE
                        Control dose (default "0")
  --treated_dose TREATED_DOSE
                        Treated dose (default "30")
  --celltypes_keep CELLTYPES_KEEP
                        Cell types to keep in the dataset during
                        training/testing - either a file containing list of
                        cell types (one cell type per line) or semicolon
                        separated list of cell types (surround in quotation
                        marks) - default all available cell types (default
                        "ALL")
  --training_size TRAINING_SIZE
                        Number of samples generated from latent distribution

Example of calculating gene_scores:


python scvidr_genescores.py ../data/nault2021_multiDose.h5ad ../data/VAE_Cont_Prediction_Dioxin_5000g_Hepatocytes\ -\ portal.pt/ ../data/MultiDose_TCDD  --dose_column Dose --celltype_column celltype --test_celltype Hepatocytes\ -\ portal --control_dose 0.0 --treated_dose 30.0 --celltypes_keep ../metadata/liver_celltypes

Notebooks for figures

figure notebook path Description
Figure 2 notebooks/Figure2.ipynb Single Dose TCDD
Figure 3 notebooks/Figure3.ipynb Multi Dose TCDD
Figure 4 notebooks/Figure4.ipynb Gene Scores
Figure 5 notebooks/Figure5.ipynb Pseudodose
Supplemental Figure 2 notebooks/SupplementalFigure2.ipynb PCA of $\delta$
Supplemental Figure 3 notebooks/SupplementalFigure3.ipynb Single Dose IFNB
Supplemental Figure 4 notebooks/SupplementalFigure4.ipynb Multi Dose sciplex
Supplemental Figure 5 notebooks/SupplementalFigure5.ipynb scVIDR Analysis TCDD
Supplemental Figure 6 notebooks/SupplementalFigure6.ipynb scVIDR Analysis sciplex
Supplemental Figure 7 notebooks/SupplementalFigure7.ipynb scVIDR cross study
Supplemental Figure 8 notebooks/SupplementalFigure8.ipynb scVIDR cross species
Supplemental Figure 9 notebooks/SupplementalFigure9.ipynb scVIDR equal scGen

About

Single Cell Variational Inference of the Dose Response (scVIDR) a VAE tool used to predict expression of chemcial perturbations across cell types.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •