This workflow includes:
- Raw image enchancement with White Tophat filtering
- Peak-calling with TrackPy
- PoSTcode decoding: which is a method for decoding image-based spatial transcriptomics based on a re-parametrised matrix-variate Gaussian mixture model,
Prerequisite:
- Nextflow
- Docker/singularity
Usage (TODO):
NXF_OPTS='-Dleveldb.mmap=false' NXF_VER=23.10.1 \
nextflow -trace nextflow.executor run BioinfoTongLI/workflow-decoding -r master \
-profile local \
-params-file decoding.yaml
An example of the parameter input file is
codebook : [codebook.csv]
out_dir : [output folder]
ome_zarr : [ome-zarr path of a registered multicycle multichannel stack]
channel_map : "{'Cy5':'A','AF488':'G','Cy3':'C','Atto425':'T','AF750':'T'}"
rna_spot_size : [5]
anchor_ch_indexes : 1
prob_threshold : 0.9
trackpy_percentile : [90]
trackpy_separation : 3
codebook_sep : ','