Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support dataloader with grain backend #30

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions jax_dataloader/_modidx.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,14 @@
'jax_dataloader/loaders/base.py'),
'jax_dataloader.loaders.base.BaseDataLoader.__next__': ( 'loader.base.html#basedataloader.__next__',
'jax_dataloader/loaders/base.py')},
'jax_dataloader.loaders.grain': { 'jax_dataloader.loaders.grain.DataLoaderGrain': ( 'loader.grain.html#dataloadergrain',
'jax_dataloader/loaders/grain.py'),
'jax_dataloader.loaders.grain.DataLoaderGrain.__init__': ( 'loader.grain.html#dataloadergrain.__init__',
'jax_dataloader/loaders/grain.py'),
'jax_dataloader.loaders.grain.DataLoaderGrain.__iter__': ( 'loader.grain.html#dataloadergrain.__iter__',
'jax_dataloader/loaders/grain.py'),
'jax_dataloader.loaders.grain.DataLoaderGrain.__next__': ( 'loader.grain.html#dataloadergrain.__next__',
'jax_dataloader/loaders/grain.py')},
'jax_dataloader.loaders.jax': { 'jax_dataloader.loaders.jax.DataLoaderJAX': ( 'loader.jax.html#dataloaderjax',
'jax_dataloader/loaders/jax.py'),
'jax_dataloader.loaders.jax.DataLoaderJAX.__init__': ( 'loader.jax.html#dataloaderjax.__init__',
Expand Down
5 changes: 5 additions & 0 deletions jax_dataloader/imports.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,11 @@
tfds = None
TFDataset = Annotated[None, Is[lambda _: tf is not None]]

try:
import grain.python as grain
except ModuleNotFoundError:
grain = None

try:
import haiku as hk
except ModuleNotFoundError:
Expand Down
47 changes: 47 additions & 0 deletions jax_dataloader/loaders/grain.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/loader.grain.ipynb.

# %% ../../nbs/loader.grain.ipynb 3
from __future__ import print_function, division, annotations
from ..imports import *
from ..datasets import ArrayDataset, JAXDataset
from . import BaseDataLoader
from ..utils import get_config
from ..tests import *
import jax_dataloader as jdl

# %% auto 0
__all__ = ['DataLoaderGrain']

# %% ../../nbs/loader.grain.ipynb 4
class DataLoaderGrain(BaseDataLoader):

# @typecheck
def __init__(
self,
dataset: Union[JAXDataset, TorchDataset, HFDataset],
batch_size: int = 1, # Batch size
shuffle: bool = False, # If true, dataloader shuffles before sampling each batch
num_workers: int = 0, # Number of workers to use
drop_last: bool = False, # Drop last batch or not
**kwargs
):

sampler = grain.IndexSampler(
num_records=len(dataset),
shuffle=shuffle,
seed=get_config().global_seed,
shard_options=grain.NoSharding()
)
operations = (grain.Batch(batch_size, drop_remainder=drop_last),)
self.dataloader = grain.DataLoader(
data_source=dataset,
sampler=sampler,
operations=operations,
worker_count=num_workers
)

def __next__(self):
return next(self.dataloader)

def __iter__(self):
return self.dataloader.__iter__()
113 changes: 113 additions & 0 deletions nbs/loader.grain.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Grain Dataloader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| default_exp loaders.grain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| include: false\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"from ipynb_path import *\n",
"import warnings\n",
"warnings.simplefilter(action='ignore', category=FutureWarning)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"from __future__ import print_function, division, annotations\n",
"from jax_dataloader.imports import *\n",
"from jax_dataloader.datasets import ArrayDataset, JAXDataset\n",
"from jax_dataloader.loaders import BaseDataLoader\n",
"from jax_dataloader.utils import get_config\n",
"from jax_dataloader.tests import *\n",
"import jax_dataloader as jdl"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"class DataLoaderGrain(BaseDataLoader):\n",
"\n",
" # @typecheck\n",
" def __init__(\n",
" self, \n",
" dataset: Union[JAXDataset, TorchDataset, HFDataset],\n",
" batch_size: int = 1, # Batch size\n",
" shuffle: bool = False, # If true, dataloader shuffles before sampling each batch\n",
" num_workers: int = 0, # Number of workers to use\n",
" drop_last: bool = False, # Drop last batch or not\n",
" **kwargs\n",
" ):\n",
"\n",
" sampler = grain.IndexSampler(\n",
" num_records=len(dataset),\n",
" shuffle=shuffle,\n",
" seed=get_config().global_seed,\n",
" shard_options=grain.NoSharding()\n",
" )\n",
" operations = (grain.Batch(batch_size, drop_remainder=drop_last),)\n",
" self.dataloader = grain.DataLoader(\n",
" data_source=dataset,\n",
" sampler=sampler,\n",
" operations=operations,\n",
" worker_count=num_workers\n",
" )\n",
"\n",
" def __next__(self):\n",
" return next(self.dataloader)\n",
"\n",
" def __iter__(self):\n",
" return self.dataloader.__iter__()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"# test_dataloader(DataLoaderGrain, samples=20, batch_size=12, test_len=False)\n",
"# test_dataloader(DataLoaderGrain, samples=20, batch_size=10, test_len=False)\n",
"# test_dataloader(DataLoaderGrain, samples=11, batch_size=10, test_len=False)\n",
"# test_dataloader(DataLoaderGrain, samples=40, batch_size=12, test_len=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "python3",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
1 change: 1 addition & 0 deletions settings.ini
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ dev_requirements = scikit-learn pandas nbdev jupyter dm-haiku optax nbdev-mkdocs
torch_requirements = torch torchvision
tensorflow_requirements = tensorflow tensorflow-datasets
huggingface_requirements = datasets
grain_requirements = grain
black_formatting = False
readme_nb = index.ipynb
allowed_metadata_keys =
Expand Down
6 changes: 5 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,12 @@
tensorflow_requirements = (cfg.get('tensorflow_requirements') or '').split()
huggingface_requirements = (cfg.get('huggingface_requirements') or '').split()
torch_requirements = (cfg.get('torch_requirements') or '').split()
grain_requirements = (cfg.get('grain_requirements') or '').split()
dev_requirements = (cfg.get('dev_requirements') or '').split()
all_requirements = requirements + tensorflow_requirements + huggingface_requirements + torch_requirements + dev_requirements
all_requirements = (
requirements + tensorflow_requirements + huggingface_requirements
+ torch_requirements + grain_requirements + dev_requirements
)

extras_require = {
'all': all_requirements, 'dev': all_requirements,
Expand Down