Skip to content

NSCI 801 (Queen's U) Quantitative Neuroscience course materials

License

Notifications You must be signed in to change notification settings

BlohmLab/NSCI801-QuantNeuro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

99 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NSCI 801 - Quantitative Neuroscience

NSCI 801 (Queen's U) Quantitative Neuroscience course materials

This course is in tutorial format using Python and Google Colab.

You can find the course materials in a Jupyter Book here: StatsBook

Syllabus

Introduction (Gunnar)

Intro Python (Joe)

Advanced Python (Joe)

Data collection / signal processing (Joe)

Statistics and Hypothesis testing - basics (Joe)

  • Descriptors: central tendencies (mean, median, mode), Spread (Range, variance, percentiles), Shape (skew, kurtosis)

  • Correlation / regression

  • The logic of hypothesis testing

  • Statistical significance

  • Multiple comparisons

  • Different test statistics

  • Confidence intervals

    Descriptive Statistic (NSCI801_Descriptive_stats.ipynb)

Statistics and Hypothesis testing - advanced (Joe)

Quantitative wet lab / bench methods (Joe)

Statistics and Hypothesis testing - Bayesian (Gunnar)

Models in Neuroscience (Gunnar)

Data Neuroscience overview (Gunnar)

Correlation vs causality (Gunnar)

Reproducibility, reliability, validity (Gunnar)

Further readings

About

NSCI 801 (Queen's U) Quantitative Neuroscience course materials

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published