Skip to content

Commit

Permalink
Deployed d4c077d with MkDocs version: 1.6.1
Browse files Browse the repository at this point in the history
  • Loading branch information
VincentVillet committed Sep 12, 2024
1 parent 4e1be55 commit 71aecef
Show file tree
Hide file tree
Showing 132 changed files with 774 additions and 774 deletions.
84 changes: 42 additions & 42 deletions Autoscaling/index.html

Large diffs are not rendered by default.

6 changes: 3 additions & 3 deletions Changelog/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -3371,7 +3371,7 @@ <h3 id="changed_14">Changed</h3>
</ul>
<h3 id="fixed_18">Fixed</h3>
<ul>
<li>Object link recomputation logic: the launch_attributes_computation_chain function in the <a href="https://github.com/publicissapient-france/e-footprint/tree/main/efootprint/abstract_modeling_classes/modeling_object.py">ModelingObject class</a> now allows for a breadth first exploration of the object link graph to recompute object attributes in the right order. </li>
<li>Object link recomputation logic: the launch_attributes_computation_chain function in the <a href="https://github.com/Boavizta/e-footprint/tree/main/efootprint/abstract_modeling_classes/modeling_object.py">ModelingObject class</a> now allows for a breadth first exploration of the object link graph to recompute object attributes in the right order. </li>
</ul>
<h2 id="111-2023-11-03">[1.1.1] - 2023-11-03</h2>
<h3 id="added_16">Added</h3>
Expand All @@ -3380,8 +3380,8 @@ <h3 id="fixed_19">Fixed</h3>
<ul>
<li>Possibility to have a null service as input for user journey steps (in cases when the user simply uses the device without any service call).</li>
<li>UserJourney’s add_step method didn’t trigger setattr because of the use of the self.uj_steps.append(new_step) syntax, and hence didn’t trigger the appropriate recomputation logic. Fixed by replacing it with the self.uj_steps = self.uj_steps + [new_step] syntax.</li>
<li><a href="https://github.com/publicissapient-france/e-footprint/tree/main/efootprint/utils/graph_tools.py">graph_tools</a> module doesn’t depend any more on special selenium screenshot functions that are only used during development. Such functions have been moved to the <a href="https://github.com/publicissapient-france/e-footprint/tree/main/efootprint/utils/dev_utils">dev_utils</a> package that only contains modules not used in the project because they are work in progress or dev helper functions.</li>
<li>Fixed the <a href="https://github.com/publicissapient-france/e-footprint/tree/main/tests/abstract_modeling_classes/test_explainable_objects.py">convert_to_utc_test</a> that had broken because of time change </li>
<li><a href="https://github.com/Boavizta/e-footprint/tree/main/efootprint/utils/graph_tools.py">graph_tools</a> module doesn’t depend any more on special selenium screenshot functions that are only used during development. Such functions have been moved to the <a href="https://github.com/Boavizta/e-footprint/tree/main/efootprint/utils/dev_utils">dev_utils</a> package that only contains modules not used in the project because they are work in progress or dev helper functions.</li>
<li>Fixed the <a href="https://github.com/Boavizta/e-footprint/tree/main/tests/abstract_modeling_classes/test_explainable_objects.py">convert_to_utc_test</a> that had broken because of time change </li>
</ul>
<h2 id="110-2023-10-26">[1.1.0] - 2023-10-26</h2>
<p>State of project at time of open sourcing.</p>
Expand Down
84 changes: 42 additions & 42 deletions Job/index.html

Large diffs are not rendered by default.

12 changes: 6 additions & 6 deletions Network/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -1400,8 +1400,8 @@ <h2 id="calculated-attributes">Calculated attributes</h2>
<h3 id="energy_footprint">energy_footprint</h3>
<p>hourly network energy footprint in kilogram. </p>
<p>Example value: 26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in kg:<br />
first 10 vals [0.02, 0.02, 0.02, 0.03, 0.03, 0.01, 0.0, 0.0, 0.03, 0.01],<br />
last 10 vals [0.02, 0.01, 0.03, 0.03, 0.01, 0.02, 0.0, 0.03, 0.01, 0.02] </p>
first 10 vals [0.01, 0.02, 0.03, 0.0, 0.01, 0.03, 0.02, 0.01, 0.01, 0.01],<br />
last 10 vals [0.01, 0.02, 0.02, 0.02, 0.0, 0.01, 0.02, 0.01, 0.01, 0.0] </p>
<p>Depends directly on: </p>
<ul>
<li><a href="../Job/#hourly_data_upload_per_usage_pattern">Hourly data upload for streaming in usage pattern</a></li>
Expand Down Expand Up @@ -1443,7 +1443,7 @@ <h1></h1>
</center>
<style type="text/css">

#mynetwork_00bc23 {
#mynetwork_4ae4c9 {
width: 760px;
height: 300px;
background-color: #ffffff;
Expand All @@ -1465,7 +1465,7 @@ <h1></h1>
<div class="card" style="width: 100%">


<div id="mynetwork_00bc23" class="card-body"></div>
<div id="mynetwork_4ae4c9" class="card-body"></div>
</div>


Expand Down Expand Up @@ -1495,12 +1495,12 @@ <h1></h1>

// This method is responsible for drawing the graph, returns the drawn network
function drawGraph() {
var container = document.getElementById('mynetwork_00bc23');
var container = document.getElementById('mynetwork_4ae4c9');



// parsing and collecting nodes and edges from the python
nodes = new vis.DataSet([{"color": null, "id": "Hourly network energy footprint", "label": "Hourly network\nenergy footprint", "shape": "dot", "size": 15, "title": "Hourly network energy footprint\n=\nusage pattern network energy consumption * Average carbon intensity of devices\ncountry\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in kWh:\nfirst 10 vals [0.2, 0.28, 0.2, 0.32, 0.36, 0.16, 0.04, 0.04, 0.32, 0.12],\nlast 10 vals [0.24, 0.08, 0.32, 0.32, 0.08, 0.24, 0.04, 0.36, 0.16, 0.24] * 85.0\ngram / kilowatt_hour\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in kg:\nfirst 10 vals [0.02, 0.02, 0.02, 0.03, 0.03, 0.01, 0.0, 0.0, 0.03, 0.01],\nlast 10 vals [0.02, 0.01, 0.03, 0.03, 0.01, 0.02, 0.0, 0.03, 0.01, 0.02]", "x": 0.0, "y": 900}, {"color": null, "id": "usage pattern network energy consumption", "label": "usage pattern\nnetwork energy\nconsumption", "shape": "dot", "size": 15, "title": "usage pattern network energy consumption\n=\n(Hourly data upload for streaming in usage pattern + Hourly data download for\nstreaming in usage pattern) * bandwith energy intensity of network\n=\n(26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in TB:\nfirst 10 vals [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\nlast 10 vals [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + 26281 values\nfrom 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in MB:\nfirst 10 vals [4000.0, 5600.0, 4000.0, 6400.0, 7200.0, 3200.0, 800.0, 800.0,\n6400.0, 2400.0],\nlast 10 vals [4800.0, 1600.0, 6400.0, 6400.0, 1600.0, 4800.0, 800.0, 7200.0,\n3200.0, 4800.0]) * 0.05 kilowatt_hour / gigabyte\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in kWh:\nfirst 10 vals [0.2, 0.28, 0.2, 0.32, 0.36, 0.16, 0.04, 0.04, 0.32, 0.12],\nlast 10 vals [0.24, 0.08, 0.32, 0.32, 0.08, 0.24, 0.04, 0.36, 0.16, 0.24]", "x": -150.0, "y": 750}, {"color": null, "id": "Hourly data upload for streaming in usage pattern", "label": "Hourly data upload\nfor streaming in\nusage pattern", "shape": "dot", "size": 15, "title": "Hourly data upload for streaming in usage pattern\n=\n(shift by 0 of (Hourly streaming occurrences in usage pattern)) * data upload\nper hour for job streaming in usage pattern\n=\n(shift by 0 of (26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in\ndimensionless:\nfirst 10 vals [5, 7, 5, 8, 9, 4, 1, 1, 8, 3],\nlast 10 vals [6, 2, 8, 8, 2, 6, 1, 9, 4, 6])) * 0.05 megabyte\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in TB:\nfirst 10 vals [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\nlast 10 vals [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]", "x": -200.0, "y": 600}, {"color": null, "id": "Hourly data download for streaming in usage pattern", "label": "Hourly data download\nfor streaming in\nusage pattern", "shape": "dot", "size": 15, "title": "Hourly data download for streaming in usage pattern\n=\n(shift by 0 of (Hourly streaming occurrences in usage pattern)) * data download\nper hour for job streaming in usage pattern\n=\n(shift by 0 of (26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in\ndimensionless:\nfirst 10 vals [5, 7, 5, 8, 9, 4, 1, 1, 8, 3],\nlast 10 vals [6, 2, 8, 8, 2, 6, 1, 9, 4, 6])) * 800.0 megabyte\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in MB:\nfirst 10 vals [4000.0, 5600.0, 4000.0, 6400.0, 7200.0, 3200.0, 800.0, 800.0,\n6400.0, 2400.0],\nlast 10 vals [4800.0, 1600.0, 6400.0, 6400.0, 1600.0, 4800.0, 800.0, 7200.0,\n3200.0, 4800.0]", "x": 0.0, "y": 600}, {"color": null, "id": "bandwith energy intensity of network", "label": "bandwith energy\nintensity of network", "shape": "dot", "size": 15, "title": "bandwith energy intensity of network = 0.05 kilowatt_hour / gigabyte", "x": 200.0, "y": 600}, {"color": null, "id": "Average carbon intensity of devices country", "label": "Average carbon\nintensity of devices\ncountry", "shape": "dot", "size": 15, "title": "Average carbon intensity of devices country = 85.0 gram / kilowatt_hour", "x": 150.0, "y": 750}]);
nodes = new vis.DataSet([{"color": null, "id": "Hourly network energy footprint", "label": "Hourly network\nenergy footprint", "shape": "dot", "size": 15, "title": "Hourly network energy footprint\n=\nusage pattern network energy consumption * Average carbon intensity of devices\ncountry\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in kWh:\nfirst 10 vals [0.08, 0.2, 0.36, 0.04, 0.12, 0.32, 0.24, 0.16, 0.08, 0.08],\nlast 10 vals [0.16, 0.28, 0.2, 0.28, 0.04, 0.12, 0.28, 0.16, 0.12, 0.04] * 85.0\ngram / kilowatt_hour\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in kg:\nfirst 10 vals [0.01, 0.02, 0.03, 0.0, 0.01, 0.03, 0.02, 0.01, 0.01, 0.01],\nlast 10 vals [0.01, 0.02, 0.02, 0.02, 0.0, 0.01, 0.02, 0.01, 0.01, 0.0]", "x": 0.0, "y": 900}, {"color": null, "id": "usage pattern network energy consumption", "label": "usage pattern\nnetwork energy\nconsumption", "shape": "dot", "size": 15, "title": "usage pattern network energy consumption\n=\n(Hourly data upload for streaming in usage pattern + Hourly data download for\nstreaming in usage pattern) * bandwith energy intensity of network\n=\n(26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in TB:\nfirst 10 vals [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\nlast 10 vals [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + 26281 values\nfrom 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in MB:\nfirst 10 vals [1600.0, 4000.0, 7200.0, 800.0, 2400.0, 6400.0, 4800.0, 3200.0,\n1600.0, 1600.0],\nlast 10 vals [3200.0, 5600.0, 4000.0, 5600.0, 800.0, 2400.0, 5600.0, 3200.0,\n2400.0, 800.0]) * 0.05 kilowatt_hour / gigabyte\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in kWh:\nfirst 10 vals [0.08, 0.2, 0.36, 0.04, 0.12, 0.32, 0.24, 0.16, 0.08, 0.08],\nlast 10 vals [0.16, 0.28, 0.2, 0.28, 0.04, 0.12, 0.28, 0.16, 0.12, 0.04]", "x": -150.0, "y": 750}, {"color": null, "id": "Hourly data upload for streaming in usage pattern", "label": "Hourly data upload\nfor streaming in\nusage pattern", "shape": "dot", "size": 15, "title": "Hourly data upload for streaming in usage pattern\n=\n(shift by 0 of (Hourly streaming occurrences in usage pattern)) * data upload\nper hour for job streaming in usage pattern\n=\n(shift by 0 of (26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in\ndimensionless:\nfirst 10 vals [2, 5, 9, 1, 3, 8, 6, 4, 2, 2],\nlast 10 vals [4, 7, 5, 7, 1, 3, 7, 4, 3, 1])) * 0.05 megabyte\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in TB:\nfirst 10 vals [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\nlast 10 vals [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]", "x": -200.0, "y": 600}, {"color": null, "id": "Hourly data download for streaming in usage pattern", "label": "Hourly data download\nfor streaming in\nusage pattern", "shape": "dot", "size": 15, "title": "Hourly data download for streaming in usage pattern\n=\n(shift by 0 of (Hourly streaming occurrences in usage pattern)) * data download\nper hour for job streaming in usage pattern\n=\n(shift by 0 of (26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in\ndimensionless:\nfirst 10 vals [2, 5, 9, 1, 3, 8, 6, 4, 2, 2],\nlast 10 vals [4, 7, 5, 7, 1, 3, 7, 4, 3, 1])) * 800.0 megabyte\n=\n26281 values from 2024-12-31 22:00:00 to 2027-12-31 22:00:00 in MB:\nfirst 10 vals [1600.0, 4000.0, 7200.0, 800.0, 2400.0, 6400.0, 4800.0, 3200.0,\n1600.0, 1600.0],\nlast 10 vals [3200.0, 5600.0, 4000.0, 5600.0, 800.0, 2400.0, 5600.0, 3200.0,\n2400.0, 800.0]", "x": 0.0, "y": 600}, {"color": null, "id": "bandwith energy intensity of network", "label": "bandwith energy\nintensity of network", "shape": "dot", "size": 15, "title": "bandwith energy intensity of network = 0.05 kilowatt_hour / gigabyte", "x": 200.0, "y": 600}, {"color": null, "id": "Average carbon intensity of devices country", "label": "Average carbon\nintensity of devices\ncountry", "shape": "dot", "size": 15, "title": "Average carbon intensity of devices country = 85.0 gram / kilowatt_hour", "x": 150.0, "y": 750}]);
edges = new vis.DataSet([{"arrows": "to", "from": "usage pattern network energy consumption", "to": "Hourly network energy footprint"}, {"arrows": "to", "from": "Hourly data upload for streaming in usage pattern", "to": "usage pattern network energy consumption"}, {"arrows": "to", "from": "Hourly data download for streaming in usage pattern", "to": "usage pattern network energy consumption"}, {"arrows": "to", "from": "bandwith energy intensity of network", "to": "usage pattern network energy consumption"}, {"arrows": "to", "from": "Average carbon intensity of devices country", "to": "Hourly network energy footprint"}]);

nodeColors = {};
Expand Down
Loading

0 comments on commit 71aecef

Please sign in to comment.