-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_transforms.py
145 lines (108 loc) · 4.68 KB
/
custom_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import division
import torch
import random
import numpy as np
from scipy.misc import imresize, imrotate
'''Set of tranform random routines that takes list of inputs as arguments,
in order to have random but coherent transformations.'''
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, images, intrinsics):
for t in self.transforms:
images, intrinsics = t(images, intrinsics)
# print(len(images))
return images, intrinsics
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, images, intrinsics):
for tensor in images:
for t, m, s in zip(tensor, self.mean, self.std):
t.sub_(m).div_(s)
return images, intrinsics
class NormalizeLocally(object):
def __call__(self, images, intrinsics ):
image_tensor = torch.stack(images)
assert(image_tensor.size(1)==3) #3 channel image
mean = image_tensor.transpose(0,1).contiguous().view(3, -1).mean(1)
std = image_tensor.transpose(0,1).contiguous().view(3, -1).std(1)
for tensor in images:
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return images, intrinsics
class ArrayToTensor(object):
"""Converts a list of numpy.ndarray (H x W x C) along with a intrinsics matrix to a list of torch.FloatTensor of shape (C x H x W) with a intrinsics tensor."""
def __call__(self, images, intrinsics):
tensors = []
for im in images:
# put it from HWC to CHW format
if im.shape[-1] ==3 :
im = np.transpose(im, (2, 0, 1))
# handle numpy array
tensors.append(torch.from_numpy(im).float()/255)
# print(4, len(tensors))
return tensors, intrinsics
class RandomHorizontalFlip(object):
"""Randomly horizontally flips the given numpy array with a probability of 0.5"""
def __call__(self, images, intrinsics):
assert intrinsics is not None
if random.random() < 0.5:
output_intrinsics = np.copy(intrinsics)
output_images = [np.copy(np.fliplr(im)) for im in images]
w = output_images[0].shape[1]
output_intrinsics[0,2] = w - output_intrinsics[0,2]
else:
output_images = images
output_intrinsics = intrinsics
# print(2, len(output_images))
return output_images, output_intrinsics
class RandomRotate(object):
"""Randomly rotates images up to 10 degrees and crop them to keep same size as before."""
def __call__(self, images, intrinsics):
if np.random.random() > 0.5:
return images, intrinsics
else:
assert intrinsics is not None
rot = np.random.uniform(0,10)
rotated_images = [imrotate(im, rot) for im in images]
# print(1, len(rotated_images))
return rotated_images, intrinsics
class RandomScaleCrop(object):
"""Randomly zooms images up to 15% and crop them to keep same size as before."""
def __init__(self, h=0, w=0):
self.h = h
self.w = w
def __call__(self, images, intrinsics):
assert intrinsics is not None
output_intrinsics = np.copy(intrinsics)
in_h, in_w, _ = images[0].shape
x_scaling, y_scaling = np.random.uniform(1,1.001,2)
scaled_h, scaled_w = int(in_h * y_scaling), int(in_w * x_scaling)
output_intrinsics[0] *= x_scaling
output_intrinsics[1] *= y_scaling
scaled_images = [imresize(im, (scaled_h, scaled_w)) for im in images]
if self.h and self.w:
in_h, in_w = self.h, self.w
offset_y = np.random.randint(scaled_h - in_h + 1)
offset_x = np.random.randint(scaled_w - in_w + 1)
cropped_images = [im[offset_y:offset_y + in_h, offset_x:offset_x + in_w] for im in scaled_images]
output_intrinsics[0,2] -= offset_x
output_intrinsics[1,2] -= offset_y
# print(3, len(cropped_images))
return cropped_images, output_intrinsics
class Scale(object):
"""Scales images to a particular size"""
def __init__(self, h, w):
self.h = h
self.w = w
def __call__(self, images, intrinsics):
assert intrinsics is not None
output_intrinsics = np.copy(intrinsics)
in_h, in_w, _ = images[0].shape
scaled_h, scaled_w = self.h , self.w
output_intrinsics[0] *= (scaled_w / in_w)
output_intrinsics[1] *= (scaled_h / in_h)
scaled_images = [imresize(im, (scaled_h, scaled_w)) for im in images]
return scaled_images, output_intrinsics