Vee Machine Learning Deployment
Dataset folder contain the dataset used for training. This folder also contains the code for generating the dataset.
Model folder contain the model used machine learning with format .h5. The model generated from the dataset is stored in this folder.
Notebook folder contain the notebook used for training and generating the model. You can import the notebook on Jupyter Notebook or Google Colab.
- Python 3.6
- pip3
- numpy
- pandas
- matplotlib
- tensorflow
- keras
- sklearn
Fork and clone the forked repository:
git clone git://github.com/<your_fork>/Vee-ML-Deployment
Install requirement libraries:
pip3 install -r requirements.txt
Run main.py:
python3 main.py
Predicting the data:
curl -H 'Content-Type: application/json' -X POST -d '{"data": [83000, 70000, 80000, 120000, 300000]}' \
http://<YOUR_IP>:8080/v2/predict
Example response:
{
"forecast":[90767,89717,90525,93743],
"success":true
}