-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactored replay_session into Simulator object basic functionality
- Loading branch information
Showing
8 changed files
with
492 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
import json | ||
import logging as logger | ||
from dataclasses import dataclass | ||
from typing import Tuple | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
import seaborn as sns | ||
from bcipy.config import ( | ||
RAW_DATA_FILENAME, | ||
TRIGGER_FILENAME, | ||
DEFAULT_PARAMETER_FILENAME, SESSION_DATA_FILENAME, | ||
DEFAULT_DEVICE_SPEC_FILENAME, | ||
) | ||
from bcipy.helpers.acquisition import analysis_channels | ||
import bcipy.acquisition.devices as devices | ||
from bcipy.helpers.list import grouper | ||
from bcipy.helpers.load import load_json_parameters, load_raw_data, load_experimental_data | ||
from bcipy.helpers.session import read_session, evidence_records | ||
from bcipy.helpers.stimuli import update_inquiry_timing | ||
from bcipy.helpers.triggers import TriggerType, trigger_decoder | ||
from bcipy.helpers.symbols import alphabet | ||
from bcipy.signal.model import PcaRdaKdeModel | ||
from bcipy.signal.process import get_default_transform, filter_inquiries, ERPTransformParams | ||
|
||
logger.getLogger().setLevel(logger.INFO) | ||
log = logger.getLogger(__name__) | ||
|
||
|
||
@dataclass() | ||
class ExtractedExperimentData: # TODO clean up design | ||
inquiries: np.ndarray | ||
trials: np.ndarray | ||
labels: list | ||
inquiry_timing: list | ||
|
||
decoded_triggers: tuple | ||
|
||
|
||
def process_raw_data_for_model(data_folder, parameters, model_class=PcaRdaKdeModel) -> ExtractedExperimentData: | ||
|
||
assert parameters, "Parameters are required for offline analysis." | ||
if not data_folder: | ||
data_folder = load_experimental_data() | ||
|
||
# extract relevant session information from parameters file | ||
trial_window = parameters.get("trial_window") | ||
window_length = trial_window[1] - trial_window[0] | ||
|
||
prestim_length = parameters.get("prestim_length") | ||
trials_per_inquiry = parameters.get("stim_length") | ||
# The task buffer length defines the min time between two inquiries | ||
# We use half of that time here to buffer during transforms | ||
buffer = int(parameters.get("task_buffer_length") / 2) | ||
raw_data_file = f"{RAW_DATA_FILENAME}.csv" | ||
|
||
# get signal filtering information | ||
transform_params = parameters.instantiate(ERPTransformParams) | ||
downsample_rate = transform_params.down_sampling_rate | ||
static_offset = parameters.get("static_trigger_offset") | ||
|
||
log.info( | ||
f"\nData processing settings: \n" | ||
f"{str(transform_params)} \n" | ||
f"Trial Window: {trial_window[0]}-{trial_window[1]}s, " | ||
f"Prestimulus Buffer: {prestim_length}s, Poststimulus Buffer: {buffer}s \n" | ||
f"Static offset: {static_offset}" | ||
) | ||
|
||
# Load raw data | ||
raw_data = load_raw_data(Path(data_folder, raw_data_file)) | ||
channels = raw_data.channels | ||
type_amp = raw_data.daq_type | ||
sample_rate = raw_data.sample_rate | ||
|
||
devices.load(Path(data_folder, DEFAULT_DEVICE_SPEC_FILENAME)) | ||
device_spec = devices.preconfigured_device(raw_data.daq_type) | ||
|
||
# setup filtering | ||
default_transform = get_default_transform( | ||
sample_rate_hz=sample_rate, | ||
notch_freq_hz=transform_params.notch_filter_frequency, | ||
bandpass_low=transform_params.filter_low, | ||
bandpass_high=transform_params.filter_high, | ||
bandpass_order=transform_params.filter_order, | ||
downsample_factor=transform_params.down_sampling_rate, | ||
) | ||
|
||
log.info(f"Channels read from csv: {channels}") | ||
log.info(f"Device type: {type_amp}, fs={sample_rate}") | ||
|
||
k_folds = parameters.get("k_folds") | ||
model = model_class(k_folds=k_folds) | ||
|
||
# Process triggers.txt files | ||
trigger_targetness, trigger_timing, trigger_symbols = trigger_decoder( | ||
offset=static_offset, | ||
trigger_path=f"{data_folder}/{TRIGGER_FILENAME}", | ||
exclusion=[TriggerType.PREVIEW, TriggerType.EVENT, TriggerType.FIXATION], | ||
) | ||
|
||
# update the trigger timing list to account for the initial trial window | ||
corrected_trigger_timing = [timing + trial_window[0] for timing in trigger_timing] | ||
|
||
# Channel map can be checked from raw_data.csv file or the devices.json located in the acquisition module | ||
# The timestamp column [0] is already excluded. | ||
channel_map = analysis_channels(channels, device_spec) | ||
channels_used = [channels[i] for i, keep in enumerate(channel_map) if keep == 1] | ||
log.info(f'Channels used in analysis: {channels_used}') | ||
|
||
data, fs = raw_data.by_channel() | ||
|
||
inquiries, inquiry_labels, inquiry_timing = model.reshaper( | ||
trial_targetness_label=trigger_targetness, | ||
timing_info=corrected_trigger_timing, | ||
eeg_data=data, | ||
sample_rate=sample_rate, | ||
trials_per_inquiry=trials_per_inquiry, | ||
channel_map=channel_map, | ||
poststimulus_length=window_length, | ||
prestimulus_length=prestim_length, | ||
transformation_buffer=buffer, | ||
) | ||
|
||
inquiries, fs = filter_inquiries(inquiries, default_transform, sample_rate) | ||
inquiry_timing = update_inquiry_timing(inquiry_timing, downsample_rate) | ||
trial_duration_samples = int(window_length * fs) | ||
trials = model.reshaper.extract_trials(inquiries, trial_duration_samples, inquiry_timing) | ||
|
||
# define the training classes using integers, where 0=nontargets/1=targets | ||
# labels = inquiry_labels.flatten() | ||
|
||
return ExtractedExperimentData(inquiries, trials, inquiry_labels, inquiry_timing, (trigger_targetness, trigger_timing, trigger_symbols)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import logging as logger | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
import seaborn as sns | ||
|
||
from bcipy.helpers.parameters import Parameters | ||
|
||
logger.getLogger().setLevel(logger.INFO) | ||
|
||
|
||
def plot_comparison_records(records, outdir, title="response_values", y_scale="log"): | ||
df = pd.DataFrame.from_records(records) | ||
ax = sns.stripplot( | ||
x="which_model", | ||
y="response_value", | ||
data=df, | ||
order=["old_target", "new_target", "old_non_target", "new_non_target"], | ||
) | ||
sns.boxplot( | ||
showmeans=True, | ||
meanline=True, | ||
meanprops={"color": "k", "ls": "-", "lw": 2}, | ||
medianprops={"visible": False}, | ||
whiskerprops={"visible": False}, | ||
zorder=10, | ||
x="which_model", | ||
y="response_value", | ||
data=df, | ||
showfliers=False, | ||
showbox=False, | ||
showcaps=False, | ||
ax=ax, | ||
order=["old_target", "new_target", "old_non_target", "new_non_target"], | ||
) | ||
|
||
ax.set(yscale=y_scale) | ||
plt.savefig(outdir / f"{title}.stripplot.png", dpi=150, bbox_inches="tight") | ||
plt.close() | ||
ax = sns.boxplot( | ||
x="which_model", | ||
y="response_value", | ||
data=df, | ||
order=["old_target", "new_target", "old_non_target", "new_non_target"], | ||
) | ||
ax.set(yscale=y_scale) | ||
plt.savefig(outdir / f"{title}.boxplot.png", dpi=150, bbox_inches="tight") | ||
|
||
|
||
def plot_replay_comparison(new_target_eeg_evidence: np.ndarray, | ||
new_non_target_eeg_evidence: np.ndarray, | ||
old_target_eeg_evidence: np.ndarray, | ||
old_non_target_eeg_evidence: np.ndarray, | ||
outdir: str, | ||
parameters: Parameters, | ||
) -> None: | ||
def convert_to_records(arr, key_value, key_name="which_model", value_name="response_value") -> [dict]: | ||
return [{key_name: key_value, value_name: val} for val in arr] | ||
|
||
records = [] | ||
|
||
records.extend(convert_to_records(new_target_eeg_evidence, "new_target")) | ||
records.extend(convert_to_records(new_non_target_eeg_evidence, "new_non_target")) | ||
records.extend(convert_to_records(old_target_eeg_evidence, "old_target")) | ||
records.extend(convert_to_records(old_non_target_eeg_evidence, "old_non_target")) | ||
|
||
plot_comparison_records(records, outdir, y_scale="log") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
import argparse | ||
from pathlib import Path | ||
|
||
from bcipy.helpers.load import load_json_parameters | ||
from bcipy.simulator.sim_factory import SimulationFactory | ||
|
||
if __name__ == "__main__": | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"-d", | ||
"--data_folders", | ||
action="append", | ||
type=Path, | ||
required=True, | ||
help="Session data folders to be processed. This argument can be repeated to accumulate sessions data.") | ||
parser.add_argument( | ||
"-sm", | ||
"--smodel_files", | ||
action="append", | ||
type=Path, | ||
required=True, | ||
help="Signal models to be used") | ||
parser.add_argument( | ||
"-lm", | ||
"--lmodel_file", | ||
action="append", | ||
type=Path, | ||
required=False, | ||
help="Language models to be used") | ||
parser.add_argument("-o", "--out_dir", type=Path, default=None) | ||
parser.add_argument( | ||
"-p", | ||
"--parameter_path", | ||
type=Path, | ||
default=None, | ||
help="Parameter file to be used for replay. If none, the session parameter file will be used.") | ||
|
||
args = vars(parser.parse_args()) | ||
|
||
# assert len(set(args['data_folders'])) == len(args.data_folders), "Duplicated data folders" | ||
|
||
if args['out_dir'] is None: | ||
args['out_dir'] = Path(__file__).resolve().parent | ||
|
||
# Load parameters | ||
sim_parameters = load_json_parameters("bcipy/simulator/sim_parameters.json", value_cast=True) | ||
sim_task = sim_parameters.get("sim_task") | ||
args['sim_task'] = sim_task | ||
|
||
simulator = SimulationFactory.create(**args) | ||
simulator.run() |
Oops, something went wrong.