Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Project 5: Wenqing Wang #13

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
560 changes: 560 additions & 0 deletions .gitignore

Large diffs are not rendered by default.

96 changes: 91 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,96 @@ Vulkan Grass Rendering

**University of Pennsylvania, CIS 565: GPU Programming and Architecture, Project 5**

* (TODO) YOUR NAME HERE
* Tested on: (TODO) Windows 22, i7-2222 @ 2.22GHz 22GB, GTX 222 222MB (Moore 2222 Lab)
* Wenqing Wang
* [LinkedIn](https://www.linkedin.com/in/wenqingwang0910/)
* Tested on: Windows 11, i7-11370H @ 3.30GHz 16.0 GB, GTX 3050 Ti

### (TODO: Your README)
## Overview
This project implemented a grass simulator and renderer using Vulkan. The implementaion is heavily based on [Responsive Real-Time Grass Rendering for General 3D Scenes](https://www.cg.tuwien.ac.at/research/publications/2017/JAHRMANN-2017-RRTG/JAHRMANN-2017-RRTG-draft.pdf).

![](img/main.gif)

## Introduction
### Representing Grass as Bezier Curves

In this project, grass blades were represented as Bezier curves while performing physics calculations and culling operations.

Each Bezier curve has three control points.
* `v0`: the position of the grass blade on the geomtry
* `v1`: a Bezier curve guide that is always "above" `v0` with respect to the grass blade's up vector (explained soon)
* `v2`: a physical guide for which we simulate forces on

I also store per-blade characteristics that help simulate and tessellate grass blades correctly.
* `up`: the blade's up vector, which corresponds to the normal of the geometry that the grass blade resides on at `v0`
* Orientation: the orientation of the grass blade's face
* Height: the height of the grass blade
* Width: the width of the grass blade's face
* Stiffness coefficient: the stiffness of our grass blade, which will affect the force computations on our blade

![](img/blade_model.jpg)

## Physical Simulation
| No force | Gravity |
|--|--|
|![](img/origin.png) |![](img/gravity.png) |

| Gravity + Recovery | Gravity + Recovery + Wind |
|--|--|
|![](img/recovery.png) |![](img/wind.gif) |
### Gravity

Given a gravity direction, `D.xyz`, and the magnitude of acceleration, `D.w`, we can compute the environmental gravity in our scene as `gE = normalize(D.xyz) * D.w`.

We then determine the contribution of the gravity with respect to the front facing direction of the blade, `f`, as a term called the "front gravity". Front gravity is computed as `gF = (1/4) * ||gE|| * f`.

We can then determine the total gravity on the grass blade as `g = gE + gF`.

#### Recovery

Recovery corresponds to the counter-force that brings our grass blade back into equilibrium. This is derived in the paper using Hooke's law. In order to determine the recovery force, we need to compare the current position of `v2` to its original position before simulation started, `iv2`. At the beginning of our simulation, `v1` and `v2` are initialized to be a distance of the blade height along the `up` vector.

Once we have `iv2`, we can compute the recovery forces as `r = (iv2 - v2) * stiffness`.

#### Wind

In order to simulate wind, I create a wind function that changes with time. This function will determine a wind direction that is affecting the blade, but it is also worth noting that wind has a larger impact on grass blades whose forward directions are parallel to the wind direction. The paper describes this as a "wind alignment" term.

Considering these 2 factors, the total wind force (`w`) will be `windDirection * windAlignment`.

#### Total force

After calculating the forces mentioned above, we can determine the translation of `v2`, i.e. `tv2=(gravity+recovery+wind)*deltaTime'. In addition to this, we need to do some verification tests to make sure that situations like control point `v2` under the ground or blades of grass changing length do not occur.

## Culling
Although we need to simulate forces on every grass blade at every frame, there are many blades that we won't need to render due to a variety of reasons. Below are some heuristics that I implement to cull blades that won't contribute positively to a given frame.
| Orientation culling | View-frustum culling |
|--|--|
|![](img/ori_cull.gif) |![](img/view_frus_cull.gif) |

| Distance culling | Apply all |
|--|--|
|![](img/distance_cull.gif) |![](img/main.gif) |

#### Orientation culling

Consider the scenario in which the front face direction of the grass blade is perpendicular to the view vector. Since our grass blades won't have width, we will end up trying to render parts of the grass that are actually smaller than the size of a pixel. This could lead to aliasing artifacts.

In order to remedy this, we can simply do a dot product test to see if the view vector and front face direction of the blade are perpendicular.

#### View-frustum culling

We also want to cull blades that are outside of the view-frustum, considering they won't show up in the frame anyway. To determine if a grass blade is in the view-frustum, we can compare the visibility of three points: `v0, v2, and m`, where `m = (1/4)v0 * (1/2)v1 * (1/4)v2`.

If all three points are outside of the view-frustum, we will cull the grass blade. The paper uses a tolerance value for this test so that we are culling blades a little more conservatively. This can help with cases in which the Bezier curve is technically not visible, but we might be able to see the blade if we consider its width.

#### Distance culling

Similarly to orientation culling, we can end up with grass blades that at large distances are smaller than the size of a pixel. This could lead to additional artifacts in our renders. In this case, we can cull grass blades as a function of their distance from the camera.

## Performance Analysis

![](img/performance.png)

As we can see in the above image, our average frame per second decrease as our num of blades increase.
For the 3 different culling methods, they all contribute to our performance. When I tested the three different culling methods, I kept the viewing angle of the camera and the distance from the lawn constant. Based on the results, the distance culling performs best (at this point, the distance between the camera and the lawn made the grass on the lawn only half culled. If we move the camera closer to the lawn so that more of the grass is rendered, performance drops. Conversely, if the camera is moved away from the lawn, performance improves), while directional culling and view culling have similar performance improvements (with directional culling being slightly better).

*DO NOT* leave the README to the last minute! It is a crucial part of the
project, and we will not be able to grade you without a good README.
Binary file added img/distance_cull.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added img/gravity.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added img/main.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added img/ori_cull.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added img/origin.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added img/performance.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added img/recovery.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added img/view_frus_cull.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added img/wind.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion src/Blades.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ Blades::Blades(Device* device, VkCommandPool commandPool, float planeDim) : Mode
indirectDraw.firstInstance = 0;

BufferUtils::CreateBufferFromData(device, commandPool, blades.data(), NUM_BLADES * sizeof(Blade), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, bladesBuffer, bladesBufferMemory);
BufferUtils::CreateBuffer(device, NUM_BLADES * sizeof(Blade), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, culledBladesBuffer, culledBladesBufferMemory);
BufferUtils::CreateBuffer(device, NUM_BLADES * sizeof(Blade), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, culledBladesBuffer, culledBladesBufferMemory);
BufferUtils::CreateBufferFromData(device, commandPool, &indirectDraw, sizeof(BladeDrawIndirect), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT, numBladesBuffer, numBladesBufferMemory);
}

Expand Down
2 changes: 1 addition & 1 deletion src/Blades.h
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
#include <array>
#include "Model.h"

constexpr static unsigned int NUM_BLADES = 1 << 13;
constexpr static unsigned int NUM_BLADES = 1 << 10;
constexpr static float MIN_HEIGHT = 1.3f;
constexpr static float MAX_HEIGHT = 2.5f;
constexpr static float MIN_WIDTH = 0.1f;
Expand Down
147 changes: 144 additions & 3 deletions src/Renderer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -198,6 +198,37 @@ void Renderer::CreateComputeDescriptorSetLayout() {
// TODO: Create the descriptor set layout for the compute pipeline
// Remember this is like a class definition stating why types of information
// will be stored at each binding
VkDescriptorSetLayoutBinding bladesLayoutBinding = {};
bladesLayoutBinding.binding = 0;
bladesLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
bladesLayoutBinding.descriptorCount = 1;
bladesLayoutBinding.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
bladesLayoutBinding.pImmutableSamplers = nullptr;

VkDescriptorSetLayoutBinding culledBladesLayoutBinding = {};
culledBladesLayoutBinding.binding = 1;
culledBladesLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
culledBladesLayoutBinding.descriptorCount = 1;
culledBladesLayoutBinding.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
culledBladesLayoutBinding.pImmutableSamplers = nullptr;

VkDescriptorSetLayoutBinding numBladesLayoutBinding = {};
numBladesLayoutBinding.binding = 2;
numBladesLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
numBladesLayoutBinding.descriptorCount = 1;
numBladesLayoutBinding.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
numBladesLayoutBinding.pImmutableSamplers = nullptr;

std::vector<VkDescriptorSetLayoutBinding> bindings = { bladesLayoutBinding, culledBladesLayoutBinding, numBladesLayoutBinding };

VkDescriptorSetLayoutCreateInfo layoutInfo = {};
layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layoutInfo.bindingCount = static_cast<uint32_t>(bindings.size());
layoutInfo.pBindings = bindings.data();

if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &computeDescriptorSetLayout) != VK_SUCCESS) {
throw std::runtime_error("Failed to create descriptor set layout");
}
}

void Renderer::CreateDescriptorPool() {
Expand All @@ -216,6 +247,7 @@ void Renderer::CreateDescriptorPool() {
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 1 },

// TODO: Add any additional types and counts of descriptors you will need to allocate
{ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER , static_cast<uint32_t>(scene->GetBlades().size() * 3) },
};

VkDescriptorPoolCreateInfo poolInfo = {};
Expand Down Expand Up @@ -320,6 +352,43 @@ void Renderer::CreateModelDescriptorSets() {
void Renderer::CreateGrassDescriptorSets() {
// TODO: Create Descriptor sets for the grass.
// This should involve creating descriptor sets which point to the model matrix of each group of grass blades
grassDescriptorSets.resize(scene->GetBlades().size());

// Describe the desciptor set
VkDescriptorSetLayout layouts[] = { modelDescriptorSetLayout };
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = static_cast<uint32_t>(grassDescriptorSets.size());
allocInfo.pSetLayouts = layouts;

// Allocate descriptor sets
if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, grassDescriptorSets.data()) != VK_SUCCESS) {
throw std::runtime_error("Failed to allocate descriptor set");
}

std::vector<VkWriteDescriptorSet> descriptorWrites(grassDescriptorSets.size());

for (uint32_t i = 0; i < scene->GetBlades().size(); ++i) {
VkDescriptorBufferInfo modelBufferInfo = {};
modelBufferInfo.buffer = scene->GetBlades()[i]->GetModelBuffer();
modelBufferInfo.offset = 0;
modelBufferInfo.range = sizeof(ModelBufferObject);

descriptorWrites[i].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrites[i].dstSet = grassDescriptorSets[i];
descriptorWrites[i].dstBinding = 0;
descriptorWrites[i].dstArrayElement = 0;
descriptorWrites[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrites[i].descriptorCount = 1;
descriptorWrites[i].pBufferInfo = &modelBufferInfo;
descriptorWrites[i].pImageInfo = nullptr;
descriptorWrites[i].pTexelBufferView = nullptr;
}

// Update descriptor sets
vkUpdateDescriptorSets(logicalDevice, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);

}

void Renderer::CreateTimeDescriptorSet() {
Expand Down Expand Up @@ -360,6 +429,72 @@ void Renderer::CreateTimeDescriptorSet() {
void Renderer::CreateComputeDescriptorSets() {
// TODO: Create Descriptor sets for the compute pipeline
// The descriptors should point to Storage buffers which will hold the grass blades, the culled grass blades, and the output number of grass blades
computeDescriptorSets.resize(scene->GetBlades().size());

// Describe the desciptor set
VkDescriptorSetLayout layouts[] = { computeDescriptorSetLayout };
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = static_cast<uint32_t>(computeDescriptorSets.size());
allocInfo.pSetLayouts = layouts;

// Allocate descriptor sets
if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, computeDescriptorSets.data()) != VK_SUCCESS) {
throw std::runtime_error("Failed to allocate descriptor set");
}

std::vector<VkWriteDescriptorSet> descriptorWrites(3 * computeDescriptorSets.size());

for (uint32_t i = 0; i < scene->GetBlades().size(); ++i) {
VkDescriptorBufferInfo bladesBufferInfo = {};
bladesBufferInfo.buffer = scene->GetBlades()[i]->GetBladesBuffer();
bladesBufferInfo.offset = 0;
bladesBufferInfo.range = sizeof(Blade) * NUM_BLADES;

VkDescriptorBufferInfo culledBladesBufferInfo = {};
culledBladesBufferInfo.buffer = scene->GetBlades()[i]->GetCulledBladesBuffer();
culledBladesBufferInfo.offset = 0;
culledBladesBufferInfo.range = sizeof(Blade) * NUM_BLADES;

VkDescriptorBufferInfo numBladesBufferInfo = {};
numBladesBufferInfo.buffer = scene->GetBlades()[i]->GetNumBladesBuffer();
numBladesBufferInfo.offset = 0;
numBladesBufferInfo.range = sizeof(BladeDrawIndirect);

descriptorWrites[3 * i + 0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrites[3 * i + 0].dstSet = computeDescriptorSets[i];
descriptorWrites[3 * i + 0].dstBinding = 0;
descriptorWrites[3 * i + 0].dstArrayElement = 0;
descriptorWrites[3 * i + 0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptorWrites[3 * i + 0].descriptorCount = 1;
descriptorWrites[3 * i + 0].pBufferInfo = &bladesBufferInfo;
descriptorWrites[3 * i + 0].pImageInfo = nullptr;
descriptorWrites[3 * i + 0].pTexelBufferView = nullptr;

descriptorWrites[3 * i + 1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrites[3 * i + 1].dstSet = computeDescriptorSets[i];
descriptorWrites[3 * i + 1].dstBinding = 1;
descriptorWrites[3 * i + 1].dstArrayElement = 0;
descriptorWrites[3 * i + 1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptorWrites[3 * i + 1].descriptorCount = 1;
descriptorWrites[3 * i + 1].pBufferInfo = &culledBladesBufferInfo;
descriptorWrites[3 * i + 1].pImageInfo = nullptr;
descriptorWrites[3 * i + 1].pTexelBufferView = nullptr;

descriptorWrites[3 * i + 2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrites[3 * i + 2].dstSet = computeDescriptorSets[i];
descriptorWrites[3 * i + 2].dstBinding = 2;
descriptorWrites[3 * i + 2].dstArrayElement = 0;
descriptorWrites[3 * i + 2].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptorWrites[3 * i + 2].descriptorCount = 1;
descriptorWrites[3 * i + 2].pBufferInfo = &numBladesBufferInfo;
descriptorWrites[3 * i + 2].pImageInfo = nullptr;
descriptorWrites[3 * i + 2].pTexelBufferView = nullptr;
}

// Update descriptor sets
vkUpdateDescriptorSets(logicalDevice, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);
}

void Renderer::CreateGraphicsPipeline() {
Expand Down Expand Up @@ -717,7 +852,7 @@ void Renderer::CreateComputePipeline() {
computeShaderStageInfo.pName = "main";

// TODO: Add the compute dsecriptor set layout you create to this list
std::vector<VkDescriptorSetLayout> descriptorSetLayouts = { cameraDescriptorSetLayout, timeDescriptorSetLayout };
std::vector<VkDescriptorSetLayout> descriptorSetLayouts = { cameraDescriptorSetLayout, timeDescriptorSetLayout, computeDescriptorSetLayout };

// Create pipeline layout
VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
Expand Down Expand Up @@ -884,6 +1019,10 @@ void Renderer::RecordComputeCommandBuffer() {
vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 1, 1, &timeDescriptorSet, 0, nullptr);

// TODO: For each group of blades bind its descriptor set and dispatch
for (int i = 0; i < scene->GetBlades().size(); ++i) {
vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 2, 1, &computeDescriptorSets[i], 0, nullptr);
vkCmdDispatch(computeCommandBuffer, (NUM_BLADES / WORKGROUP_SIZE) + 1, 1, 1);
}

// ~ End recording ~
if (vkEndCommandBuffer(computeCommandBuffer) != VK_SUCCESS) {
Expand Down Expand Up @@ -976,13 +1115,14 @@ void Renderer::RecordCommandBuffers() {
VkBuffer vertexBuffers[] = { scene->GetBlades()[j]->GetCulledBladesBuffer() };
VkDeviceSize offsets[] = { 0 };
// TODO: Uncomment this when the buffers are populated
// vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);
vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);

// TODO: Bind the descriptor set for each grass blades model
vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, grassPipelineLayout, 1, 1, &grassDescriptorSets[j], 0, nullptr);

// Draw
// TODO: Uncomment this when the buffers are populated
// vkCmdDrawIndirect(commandBuffers[i], scene->GetBlades()[j]->GetNumBladesBuffer(), 0, 1, sizeof(BladeDrawIndirect));
vkCmdDrawIndirect(commandBuffers[i], scene->GetBlades()[j]->GetNumBladesBuffer(), 0, 1, sizeof(BladeDrawIndirect));
}

// End render pass
Expand Down Expand Up @@ -1057,6 +1197,7 @@ Renderer::~Renderer() {
vkDestroyDescriptorSetLayout(logicalDevice, cameraDescriptorSetLayout, nullptr);
vkDestroyDescriptorSetLayout(logicalDevice, modelDescriptorSetLayout, nullptr);
vkDestroyDescriptorSetLayout(logicalDevice, timeDescriptorSetLayout, nullptr);
vkDestroyDescriptorSetLayout(logicalDevice, computeDescriptorSetLayout, nullptr);

vkDestroyDescriptorPool(logicalDevice, descriptorPool, nullptr);

Expand Down
5 changes: 4 additions & 1 deletion src/Renderer.h
Original file line number Diff line number Diff line change
Expand Up @@ -56,12 +56,15 @@ class Renderer {
VkDescriptorSetLayout cameraDescriptorSetLayout;
VkDescriptorSetLayout modelDescriptorSetLayout;
VkDescriptorSetLayout timeDescriptorSetLayout;

VkDescriptorSetLayout computeDescriptorSetLayout;

VkDescriptorPool descriptorPool;

VkDescriptorSet cameraDescriptorSet;
std::vector<VkDescriptorSet> modelDescriptorSets;
VkDescriptorSet timeDescriptorSet;
std::vector<VkDescriptorSet> grassDescriptorSets;
std::vector<VkDescriptorSet> computeDescriptorSets;

VkPipelineLayout graphicsPipelineLayout;
VkPipelineLayout grassPipelineLayout;
Expand Down
Loading