-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test: add functional test to check disparity margins in cost volumes
- Loading branch information
Showing
1 changed file
with
205 additions
and
0 deletions.
There are no files selected for viewing
205 changes: 205 additions & 0 deletions
205
tests/functional_tests/matching_cost/test_disparity_margins.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
#!/usr/bin/env python | ||
# | ||
# Copyright (c) 2024 Centre National d'Etudes Spatiales (CNES). | ||
# | ||
# This file is part of PANDORA2D | ||
# | ||
# https://github.com/CNES/Pandora2D | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
""" | ||
Tests disparity margins in matching cost step | ||
""" | ||
|
||
import pytest | ||
import numpy as np | ||
import xarray as xr | ||
|
||
from pandora2d.img_tools import add_disparity_grid | ||
from pandora2d.state_machine import Pandora2DMachine | ||
|
||
|
||
class TestDisparityMargins: | ||
""" | ||
Test disparity margins in the cost volume | ||
""" | ||
|
||
@pytest.fixture() | ||
def create_datasets(self): | ||
""" | ||
Creates left and right datasets | ||
""" | ||
|
||
data = np.full((10, 10), 1) | ||
left = xr.Dataset( | ||
{"im": (["row", "col"], data)}, | ||
coords={"row": np.arange(data.shape[0]), "col": np.arange(data.shape[1])}, | ||
) | ||
|
||
add_disparity_grid(left, [1, 3], [-2, 2]) | ||
|
||
left.attrs = { | ||
"no_data_img": -9999, | ||
"valid_pixels": 0, | ||
"no_data_mask": 1, | ||
"crs": None, | ||
"col_disparity_source": [1, 3], | ||
"row_disparity_source": [-2, 2], | ||
} | ||
|
||
data = np.full((10, 10), 1) | ||
right = xr.Dataset( | ||
{"im": (["row", "col"], data)}, | ||
coords={"row": np.arange(data.shape[0]), "col": np.arange(data.shape[1])}, | ||
) | ||
|
||
right.attrs = { | ||
"no_data_img": -9999, | ||
"valid_pixels": 0, | ||
"no_data_mask": 1, | ||
"crs": None, | ||
"col_disparity_source": [1, 3], | ||
"row_disparity_source": [-2, 2], | ||
} | ||
|
||
return left, right | ||
|
||
@pytest.fixture() | ||
def config(self, subpix, refinement_config, matching_cost_method): | ||
return { | ||
# "input": input_config, | ||
"pipeline": { | ||
"matching_cost": { | ||
"matching_cost_method": matching_cost_method, | ||
"window_size": 1, | ||
"step": [1, 1], | ||
"subpix": subpix, | ||
}, | ||
"disparity": {"disparity_method": "wta", "invalid_disparity": -6}, | ||
"refinement": refinement_config, | ||
} | ||
} | ||
|
||
@pytest.mark.parametrize("matching_cost_method", ["sad", "ssd", "zncc"]) | ||
@pytest.mark.parametrize( | ||
["subpix", "refinement_config", "cv_shape_expected", "disp_col_expected", "disp_row_expected"], | ||
[ | ||
pytest.param( | ||
1, | ||
{"refinement_method": "dichotomy", "iterations": 1, "filter": "bicubic"}, | ||
(10, 10, 7, 9), | ||
[-1, 0, 1, 2, 3, 4, 5], | ||
[-4, -3, -2, -1, 0, 1, 2, 3, 4], | ||
id="Subpix=1 and refinement_method=dichotomy", | ||
), | ||
pytest.param( | ||
1, | ||
{ | ||
"refinement_method": "interpolation", | ||
}, | ||
(10, 10, 9, 11), | ||
[-2, -1, 0, 1, 2, 3, 4, 5, 6], | ||
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5], | ||
id="Subpix=1 and refinement_method=interpolation", | ||
), | ||
pytest.param( | ||
1, | ||
{ | ||
"refinement_method": "optical_flow", | ||
}, | ||
(10, 10, 3, 5), | ||
[1, 2, 3], | ||
[-2, -1, 0, 1, 2], | ||
id="Subpix=1 and refinement_method=optical_flow", | ||
), | ||
pytest.param( | ||
2, | ||
{"refinement_method": "dichotomy", "iterations": 1, "filter": "bicubic"}, | ||
(10, 10, 13, 17), | ||
[-1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5], | ||
[-4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4], | ||
id="Subpix=2 and refinement_method=dichotomy", | ||
), | ||
pytest.param( | ||
2, | ||
{ | ||
"refinement_method": "interpolation", | ||
}, | ||
(10, 10, 17, 21), | ||
[-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6], | ||
[-5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5], | ||
id="Subpix=2 and refinement_method=interpolation", | ||
), | ||
pytest.param( | ||
2, | ||
{ | ||
"refinement_method": "optical_flow", | ||
}, | ||
(10, 10, 5, 9), | ||
[1, 1.5, 2, 2.5, 3], | ||
[-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2], | ||
id="Subpix=2 and refinement_method=optical_flow", | ||
), | ||
pytest.param( | ||
4, | ||
{"refinement_method": "dichotomy", "iterations": 1, "filter": "bicubic"}, | ||
(10, 10, 25, 33), | ||
np.arange(-1, 5.25, 0.25), | ||
np.arange(-4, 4.25, 0.25), | ||
id="Subpix=4 and refinement_method=dichotomy", | ||
), | ||
pytest.param( | ||
4, | ||
{ | ||
"refinement_method": "interpolation", | ||
}, | ||
(10, 10, 33, 41), | ||
np.arange(-2, 6.25, 0.25), | ||
np.arange(-5, 5.25, 0.25), | ||
id="Subpix=4 and refinement_method=interpolation", | ||
), | ||
pytest.param( | ||
4, | ||
{ | ||
"refinement_method": "optical_flow", | ||
}, | ||
(10, 10, 9, 17), | ||
[1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3], | ||
[-2, -1.75, -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2], | ||
id="Subpix=4 and refinement_method=optical_flow", | ||
), | ||
], | ||
) | ||
def test_disparity_margins_in_cost_volumes( | ||
self, cv_shape_expected, disp_col_expected, disp_row_expected, config, create_datasets | ||
): | ||
""" | ||
Test that the disparity margins are correctly added in the cost volumes | ||
according to the refinement margins. | ||
""" | ||
|
||
pandora2d_machine = Pandora2DMachine() | ||
|
||
img_left, img_right = create_datasets | ||
|
||
pandora2d_machine.check_conf(config) | ||
pandora2d_machine.run_prepare(img_left, img_right, config) | ||
pandora2d_machine.run("matching_cost", config) | ||
|
||
cost_volumes = pandora2d_machine.cost_volumes["cost_volumes"] | ||
|
||
np.testing.assert_array_equal(cost_volumes.shape, cv_shape_expected) | ||
np.testing.assert_array_equal(cost_volumes.disp_col, disp_col_expected) | ||
np.testing.assert_array_equal(cost_volumes.disp_row, disp_row_expected) |