Skip to content

CODAIT/text-extensions-for-pandas

Repository files navigation

Text Extensions for Pandas

Documentation Status Binder

Natural language processing support for Pandas dataframes.

Text Extensions for Pandas turns Pandas DataFrames into a universal data structure for representing intermediate data in all phases of your NLP application development workflow.

Web site: https://ibm.biz/text-extensions-for-pandas

API docs: https://text-extensions-for-pandas.readthedocs.io/

Features

SpanArray: A Pandas extension type for spans of text

  • Connect features with regions of a document
  • Visualize the internal data of your NLP application
  • Analyze the accuracy of your models
  • Combine the results of multiple models

TensorArray: A Pandas extension type for tensors

  • Represent BERT embeddings in a Pandas series
  • Store logits and other feature vectors in a Pandas series
  • Store an entire time series in each cell of a Pandas series

Pandas front-ends for popular NLP toolkits

CoNLL-2020 Paper

Looking for the model training code from our CoNLL-2020 paper, "Identifying Incorrect Labels in the CoNLL-2003 Corpus"? See the notebooks in this directory.

The associated data set is here.

Installation

This library requires Python 3.7+, Pandas, and Numpy.

To install the latest release, just run:

pip install text-extensions-for-pandas

Depending on your use case, you may also need the following additional packages:

  • spacy (for SpaCy support)
  • transformers (for transformer-based embeddings and BERT tokenization)
  • ibm_watson (for IBM Watson support)

Alternatively, packages are available to be installed from conda-forge for use in a conda environment with:

conda install --channel=conda-forge text_extensions_for_pandas

Installation from Source

If you'd like to try out the very latest version of our code, you can install directly from the head of the master branch:

pip install git+https://github.com/CODAIT/text-extensions-for-pandas

You can also directly import our package from your local copy of the text_extensions_for_pandas source tree. Just add the root of your local copy of this repository to the front of sys.path.

Documentation

For examples of how to use the library, take a look at the example notebooks in this directory. You can try out these notebooks on Binder by navigating to https://mybinder.org/v2/gh/frreiss/tep-fred/branch-binder?urlpath=lab/tree/notebooks

To run the notebooks on your local machine, follow the following steps:

  1. Install Anaconda or Miniconda.
  2. Check out a copy of this repository.
  3. Use the script env.sh to set up an Anaconda environment for running the code in this repository.
  4. Type jupyter lab from the root of your local source tree to start a JupyterLab environment.
  5. Navigate to the notebooks directory and choose any of the notebooks there

API documentation can be found at https://text-extensions-for-pandas.readthedocs.io/en/latest/

Contents of this repository

  • text_extensions_for_pandas: Source code for the text_extensions_for_pandas module.
  • env.sh: Script to create a conda environment pd capable of running the notebooks and test cases in this project
  • generate_docs.sh: Script to build the API documentation
  • api_docs: Configuration files for generate_docs.sh
  • binder: Configuration files for running notebooks on Binder
  • config: Configuration files for env.sh.
  • docs: Project web site
  • notebooks: example notebooks
  • resources: various input files used by our example notebooks
  • test_data: data files for regression tests. The tests themselves are located adjacent to the library code files.
  • tutorials: Detailed tutorials on using Text Extensions for Pandas to cover complex end-to-end NLP use cases (work in progress).

Contributing

This project is an IBM open source project. We are developing the code in the open under the Apache License, and we welcome contributions from both inside and outside IBM.

To contribute, just open a Github issue or submit a pull request. Be sure to include a copy of the Developer's Certificate of Origin 1.1 along with your pull request.

Building and Running Tests

Before building the code in this repository, we recommend that you use the provided script env.sh to set up a consistent build environment:

$ ./env.sh --env_name myenv
$ conda activate myenv

(replace myenv with your choice of environment name).

To run tests, navigate to the root of your local copy and run:

pytest text_extensions_for_pandas

To build pip and source code packages:

python setup.py sdist bdist_wheel

(outputs go into ./dist).

To build API documentation, run:

./generate_docs.sh