Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closest Pair Of Points #89

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
119 changes: 119 additions & 0 deletions c/.gitkeep
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
// A divide and conquer program in C to find the smallest distance from a given set of points.

#include <stdio.h>
#include <float.h>
#include <stdlib.h>
#include <math.h>

// A structure to represent a Point in 2D plane
struct Point
{
int x, y;
};

// Needed to sort array of points according to X coordinate
int compareX(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->x - p2->x);
}
// Needed to sort array of points according to Y coordinate
int compareY(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->y - p2->y);
}

// A utility function to find the distance between two points
float dist(Point p1, Point p2)
{
return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
(p1.y - p2.y)*(p1.y - p2.y)
);
}

// A Brute Force method to return the smallest distance between two points in P[] of size n
float bruteForce(Point P[], int n)
{
float min = FLT_MAX;
for (int i = 0; i < n; ++i)
for (int j = i+1; j < n; ++j)
if (dist(P[i], P[j]) < min)
min = dist(P[i], P[j]);
return min;
}

// A utility function to find a minimum of two float values
float min(float x, float y)
{
return (x < y)? x : y;
}


// A utility function to find the distance between the closest points of strip of a given size. All points in strip[] are sorted according to y coordinate.
// They all have an upper bound on minimum distance as d.

float stripClosest(Point strip[], int size, float d)
{
float min = d; // Initialize the minimum distance as d

qsort(strip, size, sizeof(Point), compareY);

// Pick all points one by one and try the next points till the difference between y coordinates is smaller than d.
// This is a proven fact that this loop runs at most 6 times
for (int i = 0; i < size; ++i)
for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
if (dist(strip[i],strip[j]) < min)
min = dist(strip[i], strip[j]);

return min;
}

// A recursive function to find the smallest distance. The array P contains all points sorted according to x coordinate
float closestUtil(Point P[], int n)
{
// If there are 2 or 3 points, then use brute force
if (n <= 3)
return bruteForce(P, n);

// Find the middle point
int mid = n/2;
Point midPoint = P[mid];

// Consider the vertical line passing through the middle point
// calculate the smallest distance dl on left of middle point and dr on right side
float dl = closestUtil(P, mid);
float dr = closestUtil(P + mid, n-mid);

// Find the smaller of two distances
float d = min(dl, dr);

// Build an array strip[] that contains points close (closer than d) to the line passing through the middle point
Point strip[n];
int j = 0;
for (int i = 0; i < n; i++)
if (abs(P[i].x - midPoint.x) < d)
strip[j] = P[i], j++;

// Find the closest points in strip. Return the minimum of d and closest distance is strip[]
return min(d, stripClosest(strip, j, d) );
}

// The main function that finds the smallest distance
// This method mainly uses closestUtil()
float closest(Point P[], int n)
{
qsort(P, n, sizeof(Point), compareX);

// Use recursive function closestUtil() to find the smallest distance
return closestUtil(P, n);
}

// Driver program to test above functions
int main()
{
Point P[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};
int n = sizeof(P) / sizeof(P[0]);
printf("The smallest distance is %f ", closest(P, n));
return 0;
}