Skip to content
/ SGD Public

Implementation of Stochastic Gradient Descent algorithms in Python (cite https://doi.org/10.1007/s00158-020-02599-z)

License

Notifications You must be signed in to change notification settings

CU-UQ/SGD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SGD

Implementation of Stochastic Gradient Descent algorithms in Python (GNU GPLv3)
If you find this code useful please cite the article:

Topology Optimization under Uncertainty using a Stochastic Gradient-based Approach

Subhayan De, Jerrad Hampton, Kurt Maute, and Alireza Doostan (2020)
Structural and Multidisciplinary Optimization, 62(5), 2255-2278.
https://doi.org/10.1007/s00158-020-02599-z

BibTeX entry:

@article{de2020topology,
title={Topology optimization under uncertainty using a stochastic gradient-based approach},
author={De, Subhayan and Hampton, Jerrad and Maute, Kurt and Doostan, Alireza},
journal={Structural and Multidisciplinary Optimization},
volume={62},
number={5},
pages={2255--2278},
year={2020},
publisher={Springer}
}

Download the SGD module from https://github.com/CU-UQ/SGD.
See the demo https://github.com/CU-UQ/SGD/blob/master/sgd_demo.py for an example of the implementation.
For a description of the algorithms, see De et al (2020) (https://doi.org/10.1007/s00158-020-02599-z) and Ruder (2016) (https://arxiv.org/abs/1609.04747).
Please report any bugs to [email protected]

Required packages: numpy, time

This module implements:
(i) Stochastic Gradient Descent,
(ii) SGD with Momentum,
(iii) NAG,
(iv) AdaGrad,
(iv) RMSprop,
(vi) Adam,
(vii) Adamax,
(viii) Adadelta,
(ix) Nadam,
(x) SAG,
(xi) minibatch SGD,
(xii) SVRG.

NOTE: Currently, the stopping conditions are maximum number of iteration and 2nd norm of gradient vector is smaller than a tolerance value. Only, time-delay and exponential learning schedules are implemented.

Download this file and use import SGD as sgd to use the algorithms.
See sgd_demo.py for an example.

About

Implementation of Stochastic Gradient Descent algorithms in Python (cite https://doi.org/10.1007/s00158-020-02599-z)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages