Skip to content

CicaMatt/Sentry

Repository files navigation

Sentry: a customizable pipeline for vulnerability prediction

Download the execution file

Click on this link to get Sentry: https://l1nk.dev/T88sq


Considering the current limitation of the existing vulnerability prediction systems, our project will have the goal to develop an engineered ML pipeline for training, validating, and exporting a vulnerability prediction model which might potentially be employed within DevOps, with a particular focus on the usability, accessibility and quality of the product.

Following a possible version of configuration file:

---

repo: https://path/to/Github/repository
dataset: "path/to/dataset.csv"

configurations:
    - 0:
          Feature Scaling: zscore
          Data Balancing: smote
          Classifier: svm
          Validation: ttsplit
          Explanation Method: permutation
    - 1:
          Feature Scaling: minmax
          Feature Selection: kbest
          K: 9
          Data Balancing: smote
          Classifier: randomforest
          Validation: ttsplit
          Explanation Method: permutation
    - 2:
          Feature Scaling: minmax
          Feature Selection: pearsoncorrelation
          Data Balancing: oversampling
          Classifier: randomforest
          Validation: kfold
          Explanation Method: confusionmatrix

statistical test:
      - 0: 1, 0
      - 1: 1, 2

The possible values for each node are:

  • Data Cleaning (not exclusive)
    • dataimputation
    • shuffling
    • duplicatesremoval
  • Feature Scaling
    • zscore
    • minmax
  • Feature Selection
    • kbest (require K parameter)
      • K
    • variancethreshold
    • pearsoncorrelation
  • Data Balancing
    • smote
    • nearmiss
    • undersampling
    • oversampling
  • Classifier
    • svm
    • randomforest
    • kneighbors
  • Validation
    • ttsplit
    • kfold
    • stratifiedfold
  • Explanation Method (not exclusive)
    • confusionmatrix
    • permutation
    • partialdependence

About

Vulnerability Prediction Engineering

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages