This repository has been archived by the owner on Mar 1, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1869: Make swapping sat adjust numerical methods easier, add GPU tests r=charleskawczynski a=charleskawczynski ### Description This PR is a step towards fixing #1831 by using the numerical method type, rather than a function, as an input to `saturation_adjustment`. This should help us more rigorously test/compare the performance and robustness of numerical methods in saturation adjustment for `ρ, e_int, q_tot` and `ρ, p, q_tot` thermo variables, which are the only two cases that are potentially used beyond initialization. I've also battled the formatter a bit in the `@print` statements, and added a test section for performance with BenchmarkTools. This also: - adds a convenience method, `PhaseEquil_dev_only`, _for development only_ so that we can more easily toggle one option at a time while maintaining synchronization with all other arguments. - Adds GPU tests Co-authored-by: Charles Kawczynski <[email protected]>
- Loading branch information
Showing
10 changed files
with
443 additions
and
281 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
# These functions (variants of sa_numerical_method) | ||
# return an instance of a numerical method to solve | ||
# saturation adjustment, for different combinations | ||
# of thermodynamic variable inputs. | ||
|
||
# @print only accepts literal strings, so we must | ||
# branch to print which method is being used. | ||
function print_numerical_method( | ||
::Type{sat_adjust_method}, | ||
) where {sat_adjust_method} | ||
if sat_adjust_method <: NewtonsMethod | ||
@print(" Method=NewtonsMethod") | ||
elseif sat_adjust_method <: NewtonsMethodAD | ||
@print(" Method=NewtonsMethodAD") | ||
elseif sat_adjust_method <: SecantMethod | ||
@print(" Method=SecantMethod") | ||
elseif sat_adjust_method <: RegulaFalsiMethod | ||
@print(" Method=RegulaFalsiMethod") | ||
else | ||
error("Unsupported numerical method") | ||
end | ||
end | ||
|
||
##### | ||
##### Thermodynamic variable inputs: ρ, e_int, q_tot | ||
##### | ||
function sa_numerical_method( | ||
::Type{NM}, | ||
param_set::APS, | ||
ρ::FT, | ||
e_int::FT, | ||
q_tot::FT, | ||
phase_type::Type{<:PhaseEquil}, | ||
) where {FT, NM <: NewtonsMethod} | ||
_T_min::FT = T_min(param_set) | ||
T_init = | ||
max(_T_min, air_temperature(param_set, e_int, PhasePartition(q_tot))) # Assume all vapor | ||
return NewtonsMethod( | ||
T_init, | ||
T_ -> ∂e_int_∂T(param_set, heavisided(T_), e_int, ρ, q_tot, phase_type), | ||
) | ||
end | ||
|
||
function sa_numerical_method( | ||
::Type{NM}, | ||
param_set::APS, | ||
ρ::FT, | ||
e_int::FT, | ||
q_tot::FT, | ||
phase_type::Type{<:PhaseEquil}, | ||
) where {FT, NM <: NewtonsMethodAD} | ||
_T_min::FT = T_min(param_set) | ||
T_init = | ||
max(_T_min, air_temperature(param_set, e_int, PhasePartition(q_tot))) # Assume all vapor | ||
return NewtonsMethodAD(T_init) | ||
end | ||
|
||
function sa_numerical_method( | ||
::Type{NM}, | ||
param_set::APS, | ||
ρ::FT, | ||
e_int::FT, | ||
q_tot::FT, | ||
phase_type::Type{<:PhaseEquil}, | ||
) where {FT, NM <: SecantMethod} | ||
_T_min::FT = T_min(param_set) | ||
q_pt = PhasePartition(q_tot, FT(0), q_tot) # Assume all ice | ||
T_2 = air_temperature(param_set, e_int, q_pt) | ||
T_1 = max(_T_min, air_temperature(param_set, e_int, PhasePartition(q_tot))) # Assume all vapor | ||
T_2 = bound_upper_temperature(T_1, T_2) | ||
return SecantMethod(T_1, T_2) | ||
end | ||
|
||
function sa_numerical_method( | ||
::Type{NM}, | ||
param_set::APS, | ||
ρ::FT, | ||
e_int::FT, | ||
q_tot::FT, | ||
phase_type::Type{<:PhaseEquil}, | ||
) where {FT, NM <: RegulaFalsiMethod} | ||
_T_min::FT = T_min(param_set) | ||
q_pt = PhasePartition(q_tot, FT(0), q_tot) # Assume all ice | ||
T_2 = air_temperature(param_set, e_int, q_pt) | ||
T_1 = max(_T_min, air_temperature(param_set, e_int, PhasePartition(q_tot))) # Assume all vapor | ||
T_2 = bound_upper_temperature(T_1, T_2) | ||
return RegulaFalsiMethod(T_1, T_2) | ||
end | ||
|
||
##### | ||
##### Thermodynamic variable inputs: ρ, p, q_tot | ||
##### | ||
|
||
function sa_numerical_method_ρpq( | ||
::Type{NM}, | ||
param_set::APS, | ||
ρ::FT, | ||
p::FT, | ||
q_tot::FT, | ||
phase_type::Type{<:PhaseEquil}, | ||
) where {FT, NM <: NewtonsMethodAD} | ||
q_pt = PhasePartition(q_tot) | ||
T_init = air_temperature_from_ideal_gas_law(param_set, p, ρ, q_pt) | ||
return NewtonsMethodAD(T_init) | ||
end | ||
|
||
function sa_numerical_method_ρpq( | ||
::Type{NM}, | ||
param_set::APS, | ||
ρ::FT, | ||
p::FT, | ||
q_tot::FT, | ||
phase_type::Type{<:PhaseEquil}, | ||
) where {FT, NM <: RegulaFalsiMethod} | ||
q_pt = PhasePartition(q_tot) | ||
T_1 = air_temperature_from_ideal_gas_law(param_set, p, ρ, q_pt) - 5 | ||
T_2 = air_temperature_from_ideal_gas_law(param_set, p, ρ, q_pt) + 5 | ||
return RegulaFalsiMethod(T_1, T_2) | ||
end |
Oops, something went wrong.