Skip to content

ECDSA Signature: Add New Method IsVerified #1454

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 10 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 23 additions & 3 deletions std/signature/ecdsa/ecdsa.go
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,28 @@ type PublicKey[Base, Scalar emulated.FieldParams] sw_emulated.AffinePoint[Base]
//
// We assume that the message msg is already hashed to the scalar field.
func (pk PublicKey[T, S]) Verify(api frontend.API, params sw_emulated.CurveParams, msg *emulated.Element[S], sig *Signature[S]) {
qxBits, rbits := pk.checkParams(api, params, msg, sig)
for i := range rbits {
api.AssertIsEqual(rbits[i], qxBits[i])
}
}

// IsVerified returns whether the signature sig verifies for the message msg and public
// key pk. The curve parameters params define the elliptic curve.
// We assume that the message msg is already hashed to the scalar field.
// If the signature is valid, it returns 1; otherwise, it returns 0
func (pk PublicKey[T, S]) IsVerified(api frontend.API, params sw_emulated.CurveParams, msg *emulated.Element[S], sig *Signature[S]) frontend.Variable {
qxBits, rbits := pk.checkParams(api, params, msg, sig)
verified := frontend.Variable(1)
for i := range rbits {
res := api.IsZero(api.Sub(rbits[i], qxBits[i]))
verified = api.And(verified, res)
}
return verified

}

func (pk PublicKey[T, S]) checkParams(api frontend.API, params sw_emulated.CurveParams, msg *emulated.Element[S], sig *Signature[S]) ([]frontend.Variable, []frontend.Variable) {
cr, err := sw_emulated.New[T, S](api, params)
if err != nil {
panic(err)
Expand All @@ -43,7 +65,5 @@ func (pk PublicKey[T, S]) Verify(api frontend.API, params sw_emulated.CurveParam
if len(rbits) != len(qxBits) {
panic("non-equal lengths")
}
for i := range rbits {
api.AssertIsEqual(rbits[i], qxBits[i])
}
return qxBits, rbits
}
108 changes: 108 additions & 0 deletions std/signature/ecdsa/ecdsa_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -158,3 +158,111 @@ func ExamplePublicKey_Verify_create() {
// can continue in the PublicKey Verify example
_, _, _, _, _ = sig.R, sig.S, msg, pubx, puby
}

type EcdsaCircuitV1[T, S emulated.FieldParams] struct {
Sig Signature[S]
Msg emulated.Element[S]
Pub PublicKey[T, S]
}

func (c *EcdsaCircuitV1[T, S]) Define(api frontend.API) error {
verified := c.Pub.IsVerified(api, sw_emulated.GetCurveParams[T](), &c.Msg, &c.Sig)
api.AssertIsEqual(verified, 1)
return nil
}

func TestEcdsaPublicKeyIsVerifiedOK(t *testing.T) {

// generate parameters
privKey, _ := ecdsa.GenerateKey(rand.Reader)
publicKey := privKey.PublicKey

// sign
msg := []byte("testing ECDSA (pre-hashed)")
sigBin, _ := privKey.Sign(msg, nil)

// check that the signature is correct
flag, _ := publicKey.Verify(sigBin, msg, nil)
if !flag {
t.Errorf("can't verify signature")
}

// unmarshal signature
var sig ecdsa.Signature
sig.SetBytes(sigBin)
r, s := new(big.Int), new(big.Int)
r.SetBytes(sig.R[:32])
s.SetBytes(sig.S[:32])

hash := ecdsa.HashToInt(msg)

circuit := EcdsaCircuitV1[emulated.Secp256k1Fp, emulated.Secp256k1Fr]{}
witness := EcdsaCircuitV1[emulated.Secp256k1Fp, emulated.Secp256k1Fr]{
Sig: Signature[emulated.Secp256k1Fr]{
R: emulated.ValueOf[emulated.Secp256k1Fr](r),
S: emulated.ValueOf[emulated.Secp256k1Fr](s),
},
Msg: emulated.ValueOf[emulated.Secp256k1Fr](hash),
Pub: PublicKey[emulated.Secp256k1Fp, emulated.Secp256k1Fr]{
X: emulated.ValueOf[emulated.Secp256k1Fp](privKey.PublicKey.A.X),
Y: emulated.ValueOf[emulated.Secp256k1Fp](privKey.PublicKey.A.Y),
},
}
assert := test.NewAssert(t)
err := test.IsSolved(&circuit, &witness, ecc.BN254.ScalarField())
assert.NoError(err)
}

type EcdsaCircuitV2[T, S emulated.FieldParams] struct {
Sig Signature[S]
Msg emulated.Element[S]
Pub PublicKey[T, S]
}

func (c *EcdsaCircuitV2[T, S]) Define(api frontend.API) error {
verified := c.Pub.IsVerified(api, sw_emulated.GetCurveParams[T](), &c.Msg, &c.Sig)
api.AssertIsEqual(verified, 0)
return nil
}

func TestEcdsaPublicKeyIsVerifiedNegative(t *testing.T) {

// generate parameters
privKey, _ := ecdsa.GenerateKey(rand.Reader)
publicKey := privKey.PublicKey

// sign
msg := []byte("testing ECDSA (pre-hashed)")
sigBin, _ := privKey.Sign(msg, nil)

// check that the signature is correct
flag, _ := publicKey.Verify(sigBin, msg, nil)
if !flag {
t.Errorf("can't verify signature")
}

// unmarshal signature
var sig ecdsa.Signature
sig.SetBytes(sigBin)
r, s := new(big.Int), new(big.Int)
r.SetBytes(sig.R[:32])
s.SetBytes(sig.S[:32])

hash := ecdsa.HashToInt(msg)

circuit := EcdsaCircuitV2[emulated.Secp256k1Fp, emulated.Secp256k1Fr]{}
witness := EcdsaCircuitV2[emulated.Secp256k1Fp, emulated.Secp256k1Fr]{
Sig: Signature[emulated.Secp256k1Fr]{
R: emulated.ValueOf[emulated.Secp256k1Fr](r),
S: emulated.ValueOf[emulated.Secp256k1Fr](s),
},
Msg: emulated.ValueOf[emulated.Secp256k1Fr](hash),
Pub: PublicKey[emulated.Secp256k1Fp, emulated.Secp256k1Fr]{
X: emulated.ValueOf[emulated.Secp256k1Fp](privKey.PublicKey.A.X),
Y: emulated.ValueOf[emulated.Secp256k1Fp](privKey.PublicKey.A.Y),
},
}
assert := test.NewAssert(t)
err := test.IsSolved(&circuit, &witness, ecc.BN254.ScalarField())
assert.Error(err)
}