-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #261 from Crypto-TII/aradi
Aradi
- Loading branch information
Showing
6 changed files
with
352 additions
and
0 deletions.
There are no files selected for viewing
Binary file modified
BIN
+536 Bytes
(100%)
...pher_modules/models/milp/utils/dictionary_that_contains_inequalities_for_large_sboxes.obj
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
# **************************************************************************** | ||
# Copyright 2023 Technology Innovation Institute | ||
# | ||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <https://www.gnu.org/licenses/>. | ||
# **************************************************************************** | ||
|
||
|
||
from claasp.cipher import Cipher | ||
from claasp.utils.utils import get_ith_word | ||
from claasp.DTOs.component_state import ComponentState | ||
from claasp.name_mappings import INPUT_PLAINTEXT, INPUT_KEY | ||
|
||
input_types = [INPUT_KEY, INPUT_PLAINTEXT] | ||
PARAMETERS_CONFIGURATION_LIST = [{'block_bit_size': 128, 'key_bit_size': 256, 'number_of_rounds': 16}] | ||
|
||
|
||
class AradiBlockCipher(Cipher): | ||
""" | ||
Construct an instance of the AradiBlockCipher class. | ||
This class is used to store compact representations of a cipher, | ||
used to generate the corresponding cipher. | ||
INPUT: | ||
- ``block_bit_size`` -- **integer** (default: `64`); cipher input and output block bit size of the cipher | ||
- ``key_bit_size`` -- **integer** (default: `128`); cipher key bit size of the cipher | ||
- ``number_of_rounds`` -- **integer** (default: `0`); number of rounds of the cipher. The cipher uses the | ||
corresponding amount given the other parameters (if available) when number_of_rounds is 0 | ||
- ``sub_keys_zero`` -- **boolean** (default: `False`) | ||
- ``transformations_flag`` -- **boolean** (default: `True`) | ||
EXAMPLES:: | ||
sage: from claasp.ciphers.block_ciphers.aradi_block_cipher import AradiBlockCipher | ||
sage: aradi = AradiBlockCipher(number_of_rounds=16) | ||
sage: aradi.evaluate([0, 0x1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100]) | ||
83791582030165712186104466959690447122 | ||
""" | ||
|
||
def __init__(self, number_of_rounds=16): | ||
self.block_bit_size = 128 | ||
self.key_bit_size = 256 | ||
self.WORD_SIZE = 32 | ||
|
||
super().__init__(family_name="aradi", | ||
cipher_type="block_cipher", | ||
cipher_inputs=[INPUT_PLAINTEXT, INPUT_KEY], | ||
cipher_inputs_bit_size=[self.block_bit_size, self.key_bit_size], | ||
cipher_output_bit_size=self.block_bit_size) | ||
self.A = [11,10,9,8] | ||
self.B = [8,9,4,9] | ||
self.C = [14,11,14,7] | ||
state = INPUT_PLAINTEXT | ||
key = INPUT_KEY | ||
|
||
for round_i in range(number_of_rounds): | ||
self.add_round() | ||
round_key = self.get_round_key_id(key, round_i) | ||
state = self.round_function(state, round_key, round_i) | ||
key = self.update_key(key, round_i) | ||
|
||
round_key = self.get_round_key_id(key, 0) | ||
w = self.add_XOR_component([round_key, state], [list(range(32)), list(range(32))], 32).id | ||
x = self.add_XOR_component([round_key, state], [list(range(32, 64)), list(range(32, 64))], 32).id | ||
y = self.add_XOR_component([round_key, state], [list(range(64, 96)), list(range(64, 96))], 32).id | ||
z = self.add_XOR_component([round_key, state], [list(range(96, 128)), list(range(96, 128))], 32).id | ||
self.add_cipher_output_component([w, x, y, z], [list(range(32)) for _ in range(4)], 128) | ||
|
||
|
||
def get_key_word_bit_indexes(self, word_index): | ||
return list(range(32*(8-word_index-1), 32*(8-word_index))) | ||
|
||
def get_round_key_id(self, key, round_i): | ||
j = round_i % 2 | ||
return self.add_round_key_output_component([key, key, key, key], [self.get_key_word_bit_indexes(4*j + i) for i in range(4)], 128).id | ||
|
||
def l_function(self, xy_id_links, x_bits, y_bits, round_index): | ||
j = round_index % 4 | ||
rot_x_a = self.add_rotate_component([xy_id_links], [x_bits], 16, -self.A[j]).id | ||
rot_x_b = self.add_rotate_component([xy_id_links], [x_bits], 16, -self.B[j]).id | ||
rot_y_a = self.add_rotate_component([xy_id_links], [y_bits], 16, -self.A[j]).id | ||
rot_y_c = self.add_rotate_component([xy_id_links], [y_bits], 16, -self.C[j]).id | ||
|
||
left_part = self.add_XOR_component([xy_id_links] + [rot_x_a, rot_y_c], [x_bits] + [list(range(16)), list(range(16))], 16).id | ||
right_part = self.add_XOR_component([xy_id_links] + [rot_y_a, rot_x_b], [y_bits] + [list(range(16)), list(range(16))], 16).id | ||
return left_part, right_part | ||
|
||
def m_function(self, i, j, xy_id_links, xy_input_bits): | ||
y_inds = xy_input_bits[32:64] | ||
x_inds = xy_input_bits[:32] | ||
rot_i_y = self.add_rotate_component(xy_id_links, [y_inds], 32, -i).id | ||
rot_j_x = self.add_rotate_component(xy_id_links, [x_inds], 32, -j).id | ||
left_part = self.add_XOR_component(xy_id_links + [rot_i_y, rot_j_x], [x_inds] + [list(range(32)) for _ in range(2)], 32).id | ||
right_part = self.add_XOR_component(xy_id_links + [rot_i_y], [x_inds] + [list(range(32))], 32).id | ||
return left_part, right_part | ||
|
||
def update_key(self, key, round_i): | ||
round_constant = self.add_constant_component(32, round_i).id | ||
k1, k0 = self.m_function(1, 3, [key], self.get_key_word_bit_indexes(1) + self.get_key_word_bit_indexes(0)) | ||
k3, k2 = self.m_function(9, 28, [key], self.get_key_word_bit_indexes(3) + self.get_key_word_bit_indexes(2)) | ||
k5, k4 = self.m_function(1, 3, [key], self.get_key_word_bit_indexes(5) + self.get_key_word_bit_indexes(4)) | ||
k7, k6 = self.m_function(9, 28, [key], self.get_key_word_bit_indexes(7) + self.get_key_word_bit_indexes(6)) | ||
k7 = self.add_XOR_component([k7, round_constant], [list(range(32)) for _ in range(2)], 32).id | ||
if round_i % 2 == 0: | ||
updated_key = self.add_intermediate_output_component([k7, k5, k6, k4, k3, k1, k2, k0], [list(range(32)) for _ in range(8)], 256, f"key_{round_i}") | ||
else: | ||
updated_key = self.add_intermediate_output_component([k7, k3, k5, k1, k6, k2, k4, k0], [list(range(32)) for _ in range(8)], 256, f"key_{round_i}") | ||
return updated_key.id | ||
|
||
def round_function(self, state, round_key, round_i): | ||
w_ind = list(range(32)) | ||
x_ind = list(range(32, 64)) | ||
y_ind = list(range(64, 96)) | ||
z_ind = list(range(96, 128)) | ||
w = self.add_XOR_component([round_key, state], [list(range(32)), list(range(32))], 32).id | ||
x = self.add_XOR_component([round_key, state], [list(range(32, 64)), list(range(32, 64))], 32).id | ||
y = self.add_XOR_component([round_key, state], [list(range(64, 96)), list(range(64, 96))], 32).id | ||
z = self.add_XOR_component([round_key, state], [list(range(96, 128)), list(range(96, 128))], 32).id | ||
# SBOX | ||
wy = self.add_AND_component([w, y], [list(range(32)) for _ in range(2)], 32).id | ||
x = self.add_XOR_component([x, wy], [list(range(32)) for _ in range(2)], 32).id | ||
|
||
xy = self.add_AND_component([x, y], [list(range(32)) for _ in range(2)], 32).id | ||
z = self.add_XOR_component([z, xy], [list(range(32)) for _ in range(2)], 32).id | ||
|
||
wz = self.add_AND_component([w,z], [list(range(32)) for _ in range(2)], 32).id | ||
y = self.add_XOR_component([y, wz], [list(range(32)) for _ in range(2)], 32).id | ||
|
||
xz = self.add_AND_component([x,z], [list(range(32)) for _ in range(2)], 32).id | ||
w = self.add_XOR_component([w, xz], [list(range(32)) for _ in range(2)], 32).id | ||
|
||
# L Function | ||
#w_id_links = [sb_id for sb_id in sb_outputs] | ||
#w_input_bits = [[0] for _ in sb_outputs] | ||
x_bits = list(range(16)) | ||
y_bits = list(range(16, 32)) | ||
wl, wr = self.l_function( | ||
w, x_bits, y_bits, round_i | ||
) | ||
|
||
xl, xr = self.l_function( | ||
x, x_bits, y_bits, round_i | ||
) | ||
|
||
yl, yr = self.l_function( | ||
y, x_bits, y_bits, round_i | ||
) | ||
|
||
zl, zr = self.l_function( | ||
z, x_bits, y_bits, round_i | ||
) | ||
|
||
# Round output | ||
state = self.add_round_output_component([wl, wr, xl, xr, yl, yr, zl, zr], [list(range(16)) for _ in range(8)], | ||
128) | ||
return state.id |
164 changes: 164 additions & 0 deletions
164
claasp/ciphers/block_ciphers/aradi_block_cipher_sbox.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
# **************************************************************************** | ||
# Copyright 2023 Technology Innovation Institute | ||
# | ||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <https://www.gnu.org/licenses/>. | ||
# **************************************************************************** | ||
|
||
|
||
from claasp.cipher import Cipher | ||
from claasp.utils.utils import get_ith_word | ||
from claasp.DTOs.component_state import ComponentState | ||
from claasp.name_mappings import INPUT_PLAINTEXT, INPUT_KEY | ||
|
||
input_types = [INPUT_KEY, INPUT_PLAINTEXT] | ||
PARAMETERS_CONFIGURATION_LIST = [{'block_bit_size': 128, 'key_bit_size': 256, 'number_of_rounds': 16}] | ||
|
||
|
||
class AradiBlockCipherSBox(Cipher): | ||
""" | ||
Construct an instance of the AradiBlockCipher class using an SBox component. | ||
This class is used to store compact representations of a cipher, | ||
used to generate the corresponding cipher. | ||
INPUT: | ||
- ``block_bit_size`` -- **integer** (default: `64`); cipher input and output block bit size of the cipher | ||
- ``key_bit_size`` -- **integer** (default: `128`); cipher key bit size of the cipher | ||
- ``number_of_rounds`` -- **integer** (default: `0`); number of rounds of the cipher. The cipher uses the | ||
corresponding amount given the other parameters (if available) when number_of_rounds is 0 | ||
- ``sub_keys_zero`` -- **boolean** (default: `False`) | ||
- ``transformations_flag`` -- **boolean** (default: `True`) | ||
EXAMPLES:: | ||
sage: from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import AradiBlockCipherSBox | ||
sage: aradi = AradiBlockCipherSBox(number_of_rounds=16) | ||
sage: aradi.evaluate([0, 0x1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100]) | ||
83791582030165712186104466959690447122 | ||
""" | ||
|
||
def __init__(self, number_of_rounds=16): | ||
self.block_bit_size = 128 | ||
self.key_bit_size = 256 | ||
self.WORD_SIZE = 32 | ||
self.SBOX = [0, 1, 2, 3, 4, 13, 15, 6, 8, 11, 5, 14, 12, 7, 10, 9] | ||
|
||
super().__init__(family_name="aradi", | ||
cipher_type="block_cipher", | ||
cipher_inputs=[INPUT_PLAINTEXT, INPUT_KEY], | ||
cipher_inputs_bit_size=[self.block_bit_size, self.key_bit_size], | ||
cipher_output_bit_size=self.block_bit_size) | ||
self.A = [11,10,9,8] | ||
self.B = [8,9,4,9] | ||
self.C = [14,11,14,7] | ||
state = INPUT_PLAINTEXT | ||
key = INPUT_KEY | ||
|
||
for round_i in range(number_of_rounds): | ||
self.add_round() | ||
round_key = self.get_round_key_id(key, round_i) | ||
state = self.round_function(state, round_key, round_i) | ||
key = self.update_key(key, round_i) | ||
|
||
round_key = self.get_round_key_id(key, 0) | ||
w = self.add_XOR_component([round_key, state], [list(range(32)), list(range(32))], 32).id | ||
x = self.add_XOR_component([round_key, state], [list(range(32, 64)), list(range(32, 64))], 32).id | ||
y = self.add_XOR_component([round_key, state], [list(range(64, 96)), list(range(64, 96))], 32).id | ||
z = self.add_XOR_component([round_key, state], [list(range(96, 128)), list(range(96, 128))], 32).id | ||
self.add_cipher_output_component([w, x, y, z], [list(range(32)) for _ in range(4)], 128) | ||
|
||
|
||
def get_key_word_bit_indexes(self, word_index): | ||
return list(range(32*(8-word_index-1), 32*(8-word_index))) | ||
|
||
def get_round_key_id(self, key, round_i): | ||
j = round_i % 2 | ||
return self.add_round_key_output_component([key, key, key, key], [self.get_key_word_bit_indexes(4*j + i) for i in range(4)], 128).id | ||
|
||
def l_function(self, xy_id_links, xy_input_bits, round_index): | ||
j = round_index % 4 | ||
|
||
rot_x_a = self.add_rotate_component(xy_id_links[:16], xy_input_bits[:16], 16, -self.A[j]).id | ||
rot_x_b = self.add_rotate_component(xy_id_links[:16], xy_input_bits[:16], 16, -self.B[j]).id | ||
rot_y_a = self.add_rotate_component(xy_id_links[16:], xy_input_bits[16:], 16, -self.A[j]).id | ||
rot_y_c = self.add_rotate_component(xy_id_links[16:], xy_input_bits[16:], 16, -self.C[j]).id | ||
|
||
left_part = self.add_XOR_component(xy_id_links[:16] + [rot_x_a, rot_y_c], xy_input_bits[:16] + [list(range(16)), list(range(16))], 16).id | ||
right_part = self.add_XOR_component(xy_id_links[16:] + [rot_y_a, rot_x_b], xy_input_bits[16:] + [list(range(16)), list(range(16))], 16).id | ||
return left_part, right_part | ||
|
||
def m_function(self, i, j, xy_id_links, xy_input_bits): | ||
y_inds = xy_input_bits[32:64] | ||
x_inds = xy_input_bits[:32] | ||
rot_i_y = self.add_rotate_component(xy_id_links, [y_inds], 32, -i).id | ||
rot_j_x = self.add_rotate_component(xy_id_links, [x_inds], 32, -j).id | ||
left_part = self.add_XOR_component(xy_id_links + [rot_i_y, rot_j_x], [x_inds] + [list(range(32)) for _ in range(2)], 32).id | ||
right_part = self.add_XOR_component(xy_id_links + [rot_i_y], [x_inds] + [list(range(32))], 32).id | ||
return left_part, right_part | ||
|
||
def update_key(self, key, round_i): | ||
round_constant = self.add_constant_component(32, round_i).id | ||
k1, k0 = self.m_function(1, 3, [key], self.get_key_word_bit_indexes(1) + self.get_key_word_bit_indexes(0)) | ||
k3, k2 = self.m_function(9, 28, [key], self.get_key_word_bit_indexes(3) + self.get_key_word_bit_indexes(2)) | ||
k5, k4 = self.m_function(1, 3, [key], self.get_key_word_bit_indexes(5) + self.get_key_word_bit_indexes(4)) | ||
k7, k6 = self.m_function(9, 28, [key], self.get_key_word_bit_indexes(7) + self.get_key_word_bit_indexes(6)) | ||
k7 = self.add_XOR_component([k7, round_constant], [list(range(32)) for _ in range(2)], 32).id | ||
if round_i % 2 == 0: | ||
updated_key = self.add_intermediate_output_component([k7, k5, k6, k4, k3, k1, k2, k0], [list(range(32)) for _ in range(8)], 256, f"key_{round_i}") | ||
else: | ||
updated_key = self.add_intermediate_output_component([k7, k3, k5, k1, k6, k2, k4, k0], [list(range(32)) for _ in range(8)], 256, f"key_{round_i}") | ||
return updated_key.id | ||
|
||
def round_function(self, state, round_key, round_i): | ||
w = self.add_XOR_component([round_key, state], [list(range(32)), list(range(32))], 32).id | ||
x = self.add_XOR_component([round_key, state], [list(range(32, 64)), list(range(32, 64))], 32).id | ||
y = self.add_XOR_component([round_key, state], [list(range(64, 96)), list(range(64, 96))], 32).id | ||
z = self.add_XOR_component([round_key, state], [list(range(96, 128)), list(range(96, 128))], 32).id | ||
# SBOX | ||
sb_outputs = [] | ||
for ind in range(32): | ||
sb_outputs.append(self.add_SBOX_component([w, x, y, z], [[ind], [ind], [ind], [ind]], 4, self.SBOX).id) | ||
|
||
# L Function | ||
w_id_links = [sb_id for sb_id in sb_outputs] | ||
w_input_bits = [[0] for _ in sb_outputs] | ||
wl, wr = self.l_function( | ||
w_id_links, w_input_bits, round_i | ||
) | ||
|
||
x_id_links = [sb_id for sb_id in sb_outputs] | ||
x_input_bits = [[1] for _ in sb_outputs] | ||
xl, xr = self.l_function( | ||
x_id_links, x_input_bits, round_i | ||
) | ||
|
||
y_id_links = [sb_id for sb_id in sb_outputs] | ||
y_input_bits = [[2] for _ in sb_outputs] | ||
yl, yr = self.l_function( | ||
y_id_links, y_input_bits, round_i | ||
) | ||
|
||
z_id_links = [sb_id for sb_id in sb_outputs] | ||
z_input_bits = [[3] for _ in sb_outputs] | ||
zl, zr = self.l_function( | ||
z_id_links, z_input_bits, round_i | ||
) | ||
|
||
# Round output | ||
state = self.add_round_output_component([wl, wr, xl, xr, yl, yr, zl, zr], [list(range(16)) for _ in range(8)], | ||
128) | ||
return state.id | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
9 changes: 9 additions & 0 deletions
9
tests/unit/ciphers/block_ciphers/aradi_block_cipher_sbox_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import AradiBlockCipherSBox | ||
|
||
def test_aradi_block_cipher_sbox(): | ||
aradi = AradiBlockCipherSBox() | ||
plaintext = 0 | ||
key = 0x1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100 | ||
ciphertext = 0x3f09abf400e3bd7403260defb7c53912 | ||
assert aradi.evaluate([plaintext, key]) == ciphertext | ||
assert aradi.evaluate_vectorized([plaintext, key], evaluate_api=True) == ciphertext |
10 changes: 10 additions & 0 deletions
10
tests/unit/ciphers/block_ciphers/aradi_block_cipher_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
from claasp.ciphers.block_ciphers.aradi_block_cipher import AradiBlockCipher | ||
|
||
|
||
def test_aradi_block_cipher(): | ||
aradi = AradiBlockCipher() | ||
plaintext = 0 | ||
key = 0x1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100 | ||
ciphertext = 0x3f09abf400e3bd7403260defb7c53912 | ||
assert aradi.evaluate([plaintext, key]) == ciphertext | ||
assert aradi.evaluate_vectorized([plaintext, key], evaluate_api=True) == ciphertext |