Skip to content

Commit

Permalink
[CodeCamp2023-339] New Version of config Adapting Vision Transforme…
Browse files Browse the repository at this point in the history
…r Algorithm (open-mmlab#1727)

* add old config

* add old config

* add old config

* renew vit-base-p16_64xb64_in1k.py

* rename

* finish vit_base_p16_64xb64_in1k_384px.py

* finish vit_base_p32_64xb64_in1k.py and 384px

* finish 4 vit_large*.py

* finish vit_base_p16_32xb128_mae_in1k.py

* add vit_base_p16_4xb544_ipu_in1k.py

* modify data_root

* using  to modify cfg

* pre-commit check

* ignore ipu

* keep other files no change

* remove redefinition

* only keep vit_base_p16.py

* move init_cfg into model.update
  • Loading branch information
zeyuanyin authored Aug 2, 2023
1 parent 340d187 commit 2fb52ee
Show file tree
Hide file tree
Showing 15 changed files with 645 additions and 1 deletion.
2 changes: 1 addition & 1 deletion mmpretrain/configs/_base_/datasets/imagenet_bs32_simclr.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from mmpretrain.models import SelfSupDataPreprocessor

# dataset settings
dataset_type = 'ImageNet'
dataset_type = ImageNet
data_root = 'data/imagenet/'
data_preprocessor = dict(
type=SelfSupDataPreprocessor,
Expand Down
60 changes: 60 additions & 0 deletions mmpretrain/configs/_base_/datasets/imagenet_bs64_pil_resize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.dataset import DefaultSampler

from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
PackInputs, RandomFlip, RandomResizedCrop,
ResizeEdge)
from mmpretrain.evaluation import Accuracy

# dataset settings
dataset_type = ImageNet
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)

train_pipeline = [
dict(type=LoadImageFromFile),
dict(type=RandomResizedCrop, scale=224, backend='pillow'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(type=PackInputs),
]

test_pipeline = [
dict(type=LoadImageFromFile),
dict(type=ResizeEdge, scale=256, edge='short', backend='pillow'),
dict(type=CenterCrop, crop_size=224),
dict(type=PackInputs),
]

train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type=DefaultSampler, shuffle=True),
)

val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type=DefaultSampler, shuffle=False),
)
val_evaluator = dict(type=Accuracy, topk=(1, 5))

# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.dataset import DefaultSampler

from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
PackInputs, RandomFlip, RandomResizedCrop,
ResizeEdge)
from mmpretrain.datasets.transforms import AutoAugment
from mmpretrain.evaluation import Accuracy

# dataset settings
dataset_type = ImageNet
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)

bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]

train_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=RandomResizedCrop,
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(
type=AutoAugment,
policies='imagenet',
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(type=PackInputs),
]

test_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=ResizeEdge,
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type=CenterCrop, crop_size=224),
dict(type=PackInputs),
]

train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type=DefaultSampler, shuffle=True),
)

val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type=DefaultSampler, shuffle=False),
)
val_evaluator = dict(type=Accuracy, topk=(1, 5))

# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
89 changes: 89 additions & 0 deletions mmpretrain/configs/_base_/datasets/imagenet_bs64_swin_224.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.dataset import DefaultSampler

from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile,
PackInputs, RandAugment, RandomErasing,
RandomFlip, RandomResizedCrop, ResizeEdge)
from mmpretrain.evaluation import Accuracy

# dataset settings
dataset_type = ImageNet
data_preprocessor = dict(
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
)

bgr_mean = data_preprocessor['mean'][::-1]
bgr_std = data_preprocessor['std'][::-1]

train_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=RandomResizedCrop,
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(
type=RandAugment,
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type=RandomErasing,
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type=PackInputs),
]

test_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=ResizeEdge,
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type=CenterCrop, crop_size=224),
dict(type=PackInputs),
]

train_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='train',
pipeline=train_pipeline),
sampler=dict(type=DefaultSampler, shuffle=True),
)

val_dataloader = dict(
batch_size=64,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
split='val',
pipeline=test_pipeline),
sampler=dict(type=DefaultSampler, shuffle=False),
)
val_evaluator = dict(type=Accuracy, topk=(1, 5))

# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
31 changes: 31 additions & 0 deletions mmpretrain/configs/_base_/models/vit_base_p16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.model.weight_init import KaimingInit

from mmpretrain.models import (ImageClassifier, LabelSmoothLoss,
VisionTransformer, VisionTransformerClsHead)

# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=VisionTransformer,
arch='b',
img_size=224,
patch_size=16,
drop_rate=0.1,
init_cfg=[
dict(
type=KaimingInit,
layer='Conv2d',
mode='fan_in',
nonlinearity='linear')
]),
neck=None,
head=dict(
type=VisionTransformerClsHead,
num_classes=1000,
in_channels=768,
loss=dict(
type=LabelSmoothLoss, label_smooth_val=0.1, mode='classy_vision'),
))
44 changes: 44 additions & 0 deletions mmpretrain/configs/_base_/schedules/imagenet_bs4096_adamw.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.optim import CosineAnnealingLR, LinearLR
from torch.optim import AdamW

# optimizer
optim_wrapper = dict(
optimizer=dict(type=AdamW, lr=0.003, weight_decay=0.3),
# specific to vit pretrain
paramwise_cfg=dict(custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}),
)

# learning policy
param_scheduler = [
# warm up learning rate scheduler
dict(
type=LinearLR,
start_factor=1e-4,
by_epoch=True,
begin=0,
end=30,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type=CosineAnnealingLR,
T_max=270,
by_epoch=True,
begin=30,
end=300,
)
]

# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1)
val_cfg = dict()
test_cfg = dict()

# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=4096)
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from torch.optim import AdamW

from mmpretrain.engine import EMAHook
from mmpretrain.models import CutMix, Mixup

with read_base():
from .._base_.datasets.imagenet_bs64_swin_224 import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *

model.update(
backbone=dict(drop_rate=0, drop_path_rate=0.1, init_cfg=None),
head=dict(loss=dict(mode='original')),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=.02),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))

# dataset settings
train_dataloader.update(batch_size=128)

# schedule settings
optim_wrapper.update(
optimizer=dict(
type=AdamW,
lr=1e-4 * 4096 / 256,
weight_decay=0.3,
eps=1e-8,
betas=(0.9, 0.95)),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}))

# runtime settings
custom_hooks = [dict(type=EMAHook, momentum=1e-4)]

# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (32 GPUs) x (128 samples per GPU)
auto_scale_lr.update(base_batch_size=4096)
20 changes: 20 additions & 0 deletions mmpretrain/configs/vision_transformer/vit_base_p16_64xb64_in1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base

from mmpretrain.models import Mixup

with read_base():
from .._base_.datasets.imagenet_bs64_pil_resize_autoaug import *
from .._base_.default_runtime import *
from .._base_.models.vit_base_p16 import *
from .._base_.schedules.imagenet_bs4096_adamw import *

# model setting
model.update(
head=dict(hidden_dim=3072),
train_cfg=dict(augments=dict(type=Mixup, alpha=0.2)),
)

# schedule setting
optim_wrapper.update(clip_grad=dict(max_norm=1.0))
Loading

0 comments on commit 2fb52ee

Please sign in to comment.