Skip to content

Commit

Permalink
add runner
Browse files Browse the repository at this point in the history
Signed-off-by: Zhiyuan Chen <[email protected]>
  • Loading branch information
ZhiyuanChen committed Dec 11, 2024
1 parent 8024dc7 commit 0b58779
Show file tree
Hide file tree
Showing 77 changed files with 2,373 additions and 334 deletions.
1 change: 1 addition & 0 deletions .codespell-whitelist.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
datas
ser
marz
manuel
Expand Down
7 changes: 6 additions & 1 deletion docs/docs/about/license-faq.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,12 @@ We also consider research papers and manuscripts a special form of documentation

Since research papers are considered a form of source code, publishers are legally required to open-source all materials on their server to comply with the _[License](license.md)_ if they publish papers using MultiMolecule. This is generally impractical for most publishers.

As a special exemption under section 7 of the _[License](license.md)_, we grant permission to publish research papers using MultiMolecule in fully open access journals, conferences, or preprint servers, provided all published manuscripts are made available under the [GNU Free Documentation License (GFDL)](https://www.gnu.org/licenses/fdl.html), or a [Creative Commons license](https://creativecommons.org), or an [OSI-approved license](https://opensource.org/licenses) that permits the sharing of manuscripts.
As a special exemption under section 7 of the _[License](license.md)_, we grant permission to publish research papers using MultiMolecule in fully open access journals, conferences, or preprint servers that do not charge any fee from authors, provided all published manuscripts are made available under the [GNU Free Documentation License (GFDL)](https://www.gnu.org/licenses/fdl.html), or a [Creative Commons license](https://creativecommons.org), or an [OSI-approved license](https://opensource.org/licenses) that permits the sharing of manuscripts.

As a special exemption under section 7 of the _[License](license.md)_, we grant permission to publish research papers using MultiMolecule in certain non-profit journals, conferences, or preprint servers. Currently, the non-profit journals, conferences, or preprint servers we allow include:

- All journals published by American Association for the Advancement of Science (AAAS)
- eLife

For publishing in closed access journals or conferences, you must obtain a separate license from us. This typically involves co-authorship, a fee to support the project, or both. Contact us at [[email protected]](mailto:[email protected]) for more information.

Expand Down
7 changes: 6 additions & 1 deletion docs/docs/about/license-faq.zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,12 @@

由于研究论文被视为源代码的一种形式,如果发表使用 MultiMolecule 的论文,出版商必须开源其服务器上的所有材料,以符合 _[许可协议](license.zh.md)_ 的要求。对于大多数出版商来说,这是不切实际的。

作为 _[许可协议](license.zh.md)_ 第 7 条的特别豁免,我们允许在完全开放获取的期刊、会议或预印本服务器上发表使用 MultiMolecule 的研究论文,前提是所有发表的手稿都应按照允许共享手稿的[GNU 自由文档许可协议(GFDL)](https://www.gnu.org/licenses/fdl.html)[知识共享许可协议](https://creativecommons.org)[OSI 批准许可协议](https://opensource.org/licenses)提供。
作为 _[许可协议](license.zh.md)_ 第 7 条的特别豁免,我们允许在不向作者收取任何费用的完全开放获取的期刊、会议或预印本服务器上发表使用 MultiMolecule 的研究论文,前提是所有发表的手稿都应按照允许共享手稿的[GNU 自由文档许可协议(GFDL)](https://www.gnu.org/licenses/fdl.html)[知识共享许可协议](https://creativecommons.org)[OSI 批准许可协议](https://opensource.org/licenses)提供。

作为 _[许可协议](license.zh.md)_ 第 7 条的特别豁免,我们允许在部分非盈利性的杂志、会议或预印本服务器上发表使用 MultiMolecule 的研究论文。目前,我们允许的非盈利性杂志、会议或预印本服务器包括:

- 美国科学促进会(AAAS)旗下的所有期刊
- eLife

要在封闭获取的期刊或会议上发表论文,您必须从我们这里获得单独的许可。这通常包括共同署名、支持项目的费用或两者兼而有之。请通过 [[email protected]](mailto:[email protected]) 与我们联系以获取更多信息。

Expand Down
9 changes: 9 additions & 0 deletions docs/docs/data/multitask.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
---
authors:
- Zhiyuan Chen
date: 2024-05-04
---

# MultiTask

::: multimolecule.data.multitask
9 changes: 9 additions & 0 deletions docs/docs/runners/config.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
---
authors:
- Zhiyuan Chen
date: 2024-05-04
---

# MultiMoleculeConfig

::: multimolecule.runners.MultiMoleculeConfig
9 changes: 9 additions & 0 deletions docs/docs/runners/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
---
authors:
- Zhiyuan Chen
date: 2024-05-04
---

# runners

--8<-- "multimolecule/runners/README.md:8:"
9 changes: 9 additions & 0 deletions docs/docs/runners/runner.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
---
authors:
- Zhiyuan Chen
date: 2024-05-04
---

# MultiMoleculeRunner

::: multimolecule.runners.base_runner.BaseRunner
5 changes: 5 additions & 0 deletions docs/mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,14 @@ repo_url: https://github.com/DLS5-Omics/multimolecule

nav:
- index.md
- runners:
- runners/index.md
- MultiMoleculeRunner: runners/runner.md
- MultiMoleculeConfig: runners/config.md
- data:
- data/index.md
- Dataset: data/dataset.md
- multitask: data/multitask.md
- datasets:
- datasets/index.md
- DNA:
Expand Down
16 changes: 7 additions & 9 deletions multimolecule/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

from .apis import evaluate, infer, train
from .data import Dataset
from .models import (
AutoModelForContactPrediction,
Expand Down Expand Up @@ -111,30 +112,33 @@
HeadConfig,
HeadRegistry,
HeadTransformRegistry,
HeadTransformRegistryHF,
IdentityTransform,
LinearTransform,
MaskedLMHead,
MaskedLMHeadConfig,
NonLinearTransform,
PositionEmbeddingRegistry,
PositionEmbeddingRegistryHF,
PredictionHead,
RotaryEmbedding,
SequencePredictionHead,
SinusoidalEmbedding,
TokenHeadRegistryHF,
TokenKMerHead,
TokenPredictionHead,
)
from .runners import MultiMoleculeConfig, MultiMoleculeRunner
from .tasks import Task, TaskLevel, TaskType
from .tokenisers import Alphabet, DnaTokenizer, DotBracketTokenizer, ProteinTokenizer, RnaTokenizer, Tokenizer
from .utils import count_parameters

__all__ = [
"train",
"evaluate",
"infer",
"modeling_auto",
"modeling_outputs",
"Dataset",
"MultiMoleculeConfig",
"MultiMoleculeRunner",
"PreTrainedConfig",
"HeadConfig",
"BaseHeadConfig",
Expand Down Expand Up @@ -233,21 +237,15 @@
"HeadRegistry",
"PredictionHead",
"SequencePredictionHead",
"TokenHeadRegistryHF",
"TokenPredictionHead",
"TokenKMerHead",
"NucleotideHeadRegistryHF",
"NucleotidePredictionHead",
"NucleotideKMerHead",
"ContactPredictionHead",
"MaskedLMHead",
"HeadTransformRegistry",
"HeadTransformRegistryHF",
"LinearTransform",
"NonLinearTransform",
"IdentityTransform",
"PositionEmbeddingRegistry",
"PositionEmbeddingRegistryHF",
"RotaryEmbedding",
"SinusoidalEmbedding",
"Criterion",
Expand Down
19 changes: 19 additions & 0 deletions multimolecule/apis/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# MultiMolecule
# Copyright (C) 2024-Present MultiMolecule

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.

# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

from .run import evaluate, infer, train

__all__ = ["train", "evaluate", "infer"]
115 changes: 115 additions & 0 deletions multimolecule/apis/run.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# MultiMolecule
# Copyright (C) 2024-Present MultiMolecule

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.

# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

# mypy: disable-error-code="attr-defined"

import atexit
import os
import warnings
from typing import Type

import danling as dl
import torch

from multimolecule.runners import MultiMoleculeConfig, MultiMoleculeRunner

try:
import nni
except ImportError:
nni = None


def train(
config: MultiMoleculeConfig = None, # type: ignore
runner_cls: Type[MultiMoleculeRunner] = MultiMoleculeRunner,
):
if config is None:
config = MultiMoleculeConfig()
config = config.parse(default_config="config", no_default_config_action="warn")
config.interpolate(unsafe_eval=True)
config.training = True
if config.allow_tf32:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if config.reduced_precision_reduction:
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
if config.get("nni", False):
if nni is None:
raise ValueError("Unable to retrieve nni parameters, since nni is not installed.")
config.merge(nni.get_next_parameter())
with dl.debug(config.get("debug", False)):
runner = runner_cls(config)
atexit.register(runner.print_result)
atexit.register(runner.save_result)
atexit.register(runner.save_checkpoint)
result = runner.train()
return result


def evaluate(
config: MultiMoleculeConfig = None, # type: ignore
runner_cls: Type[MultiMoleculeRunner] = MultiMoleculeRunner,
):
if config is None:
config = MultiMoleculeConfig.empty()
config = config.parse(default_config="config", no_default_config_action="warn")
config.interpolate(unsafe_eval=True)
config.training = False
if config.allow_tf32:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if config.reduced_precision_reduction:
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
if "checkpoint" not in config or not isinstance(config.checkpoint, str):
raise RuntimeError("Please specify `checkpoint` to run evaluate")
for name, data in config.datas.items():
if "evaluation" not in data or not isinstance(data.evaluate, str):
raise RuntimeError(f"Please specify `evaluation` to run evaluate in datas.{name}")
runner = runner_cls(config)
result = runner.evaluate_epoch("evaluation")
print(result)
return result


def infer(
config: MultiMoleculeConfig = None, # type: ignore
runner_cls: Type[MultiMoleculeRunner] = MultiMoleculeRunner,
):
if config is None:
config = MultiMoleculeConfig.empty()
config = config.parse(default_config="config", no_default_config_action="warn")
config.interpolate(unsafe_eval=True)
config.training = False
if config.allow_tf32:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if config.reduced_precision_reduction:
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
if "checkpoint" not in config or not isinstance(config.checkpoint, str):
raise RuntimeError("Please specify `checkpoint` to run infer.")
for name, data in config.datas.items():
if "inference" not in data or not isinstance(data.inference, str):
raise RuntimeError(f"Please specify `inference` to run infer in datas.{name}")
if "result_path" not in config or not isinstance(config.result_path, str):
config.result_path = os.path.join(os.getcwd(), "result.json")
warnings.warn("`result_path` is not specified, default to `result.json`.", RuntimeWarning, stacklevel=2)
runner = runner_cls(config)
result = runner.infer()
runner.save(result, config.result_path)
return result
99 changes: 99 additions & 0 deletions multimolecule/apis/stat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
# MultiMolecule
# Copyright (C) 2024-Present MultiMolecule

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.

# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import os
import shutil
from statistics import mean
from typing import List

import chanfig
import pandas as pd
from chanfig import NestedDict
from tqdm import tqdm


class Result(NestedDict):
pretrained: str
id: str
seed: int
epoch: int
validation: NestedDict
test: NestedDict


def get_result_stat(experiment_root: str, remove_empty: bool = True) -> List[Result]:
results = []
for root, _, files in tqdm(os.walk(experiment_root)):
if "run.log" in files:
if "best.json" not in files:
if remove_empty:
shutil.rmtree(root)
continue
best = NestedDict.from_json(os.path.join(root, "best.json"))
if "index" not in best:
if remove_empty:
shutil.rmtree(root)
continue
config = NestedDict.from_yaml(os.path.join(root, "trainer.yaml"))
pretrained = config.pretrained.split("/")[-1]
seed = config.seed
pretrained, seed = "", 1
result = Result(id=best.id, pretrained=pretrained, seed=seed)
result.validation = NestedDict(
{k: format(mean(v) if isinstance(v, list) else v, ".8f") for k, v in best.validation.items()}
)
result.test = NestedDict(
{k: format(mean(v) if isinstance(v, list) else v, ".8f") for k, v in best.test.items()}
)
result.epoch = best.index
result.pop("validation.time", None)
result.pop("test.time", None)
result.pop("validation.loss", None)
result.pop("test.loss", None)
result.pop("validation.lr", None)
result.pop("test.lr", None)
results.append(result)
# Remove empty directories, perform twice to remove all empty directories
if remove_empty:
for root, dirs, files in os.walk(experiment_root):
if not files and not dirs:
os.rmdir(root)
for root, dirs, files in os.walk(experiment_root):
if not files and not dirs:
os.rmdir(root)
results.sort(key=lambda x: (x.pretrained, x.seed, x.id))
return results


def write_result_stat(results: List[Result], path: str):
results = [dict(result.all_items()) for result in results] # type: ignore[misc]
df = pd.DataFrame.from_dict(results)
df.insert(len(df.keys()) - 1, "comment", "")
df.fillna("")
df.to_csv(path, index=False)


class Config(chanfig.Config):
experiment_root: str = "experiments"
out_path: str = "result.csv"


if __name__ == "__main__":
config = Config().parse()
result_stat = get_result_stat(config.experiment_root)
if not len(result_stat) > 0:
raise ValueError("No results found")
write_result_stat(result_stat, config.out_path)
Loading

0 comments on commit 0b58779

Please sign in to comment.