-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c2b7f19
commit 836c909
Showing
6 changed files
with
1,428 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
from transformers import ( | ||
AutoConfig, | ||
AutoModel, | ||
AutoModelForMaskedLM, | ||
AutoModelForPreTraining, | ||
AutoModelForSequenceClassification, | ||
AutoModelForTokenClassification, | ||
AutoModelWithLMHead, | ||
AutoTokenizer, | ||
) | ||
|
||
from multimolecule.tokenizers.rna import RnaTokenizer | ||
|
||
from .configuration_utrbert import UtrBertConfig | ||
from .modeling_utrbert import ( | ||
UtrBertForMaskedLM, | ||
UtrBertForPretraining, | ||
UtrBertForSequenceClassification, | ||
UtrBertForTokenClassification, | ||
UtrBertModel, | ||
) | ||
|
||
__all__ = [ | ||
"UtrBertConfig", | ||
"UtrBertModel", | ||
"UtrBertForMaskedLM", | ||
"UtrBertForPretraining", | ||
"UtrBertForSequenceClassification", | ||
"UtrBertForTokenClassification", | ||
] | ||
|
||
AutoConfig.register("utrbert", UtrBertConfig) | ||
AutoModel.register(UtrBertConfig, UtrBertModel) | ||
AutoModelForMaskedLM.register(UtrBertConfig, UtrBertForMaskedLM) | ||
AutoModelForPreTraining.register(UtrBertConfig, UtrBertForPretraining) | ||
AutoModelForSequenceClassification.register(UtrBertConfig, UtrBertForSequenceClassification) | ||
AutoModelForTokenClassification.register(UtrBertConfig, UtrBertForTokenClassification) | ||
AutoModelWithLMHead.register(UtrBertConfig, UtrBertForTokenClassification) | ||
AutoTokenizer.register(UtrBertConfig, RnaTokenizer) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.utils import logging | ||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
class UtrBertConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`UtrBertModel`]. It is used to instantiate a | ||
3UTRBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration | ||
with the defaults will yield a similar configuration to that of the 3UTRBERT | ||
[yangyn533/3UTRBERT](https://github.com/yangyn533/3UTRBERT) architecture. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*): | ||
Vocabulary size of the UTRBERT model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`BertModel`]. | ||
nmers (`int`, *optional*): | ||
kmer size of the UTRBERT model. Defines the vocabulary size of the model. | ||
hidden_size (`int`, *optional*, defaults to 768): | ||
Dimensionality of the encoder layers and the pooler layer. | ||
num_hidden_layers (`int`, *optional*, defaults to 12): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 12): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
intermediate_size (`int`, *optional*, defaults to 3072): | ||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | ||
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | ||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | ||
`"relu"`, `"silu"` and `"gelu_new"` are supported. | ||
hidden_dropout (`float`, *optional*, defaults to 0.1): | ||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||
attention_dropout (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for the attention probabilities. | ||
max_position_embeddings (`int`, *optional*, defaults to 512): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
type_vocab_size (`int`, *optional*, defaults to 2): | ||
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | ||
The epsilon used by the layer normalization layers. | ||
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | ||
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | ||
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | ||
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | ||
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | ||
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | ||
is_decoder (`bool`, *optional*, defaults to `False`): | ||
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
Examples: | ||
>>> from multimolecule import UtrBertConfig, UtrBertModel | ||
>>> # Initializing a UtrBERT multimolecule/utrbert style configuration | ||
>>> configuration = UtrBertConfig() | ||
>>> # Initializing a model (with random weights) from the multimolecule/utrbert style configuration | ||
>>> model = UtrBertModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
""" | ||
|
||
model_type = "utrbert" | ||
|
||
def __init__( | ||
self, | ||
vocab_size=None, | ||
nmers=None, | ||
hidden_size=768, | ||
num_hidden_layers=12, | ||
num_attention_heads=12, | ||
intermediate_size=3072, | ||
hidden_act="gelu", | ||
hidden_dropout=0.1, | ||
attention_dropout=0.1, | ||
max_position_embeddings=512, | ||
type_vocab_size=2, | ||
initializer_range=0.02, | ||
layer_norm_eps=1e-12, | ||
pad_token_id=0, | ||
position_embedding_type="absolute", | ||
use_cache=True, | ||
classifier_dropout=None, | ||
**kwargs, | ||
): | ||
super().__init__(pad_token_id=pad_token_id, **kwargs) | ||
|
||
self.vocab_size = vocab_size | ||
self.nmers = nmers | ||
self.hidden_size = hidden_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.hidden_act = hidden_act | ||
self.intermediate_size = intermediate_size | ||
self.hidden_dropout = hidden_dropout | ||
self.attention_dropout = attention_dropout | ||
self.max_position_embeddings = max_position_embeddings | ||
self.type_vocab_size = type_vocab_size | ||
self.initializer_range = initializer_range | ||
self.layer_norm_eps = layer_norm_eps | ||
self.position_embedding_type = position_embedding_type | ||
self.use_cache = use_cache | ||
self.classifier_dropout = classifier_dropout |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
import os | ||
from typing import Optional | ||
|
||
import chanfig | ||
import torch | ||
from torch import nn | ||
|
||
from multimolecule.models import SpliceBertConfig as Config | ||
from multimolecule.models import SpliceBertForPretraining as Model | ||
from multimolecule.tokenizers.rna.utils import get_special_tokens_map, get_tokenizer_config, get_vocab_list | ||
|
||
try: | ||
from huggingface_hub import HfApi | ||
except ImportError: | ||
HfApi = None | ||
|
||
torch.manual_seed(1013) | ||
|
||
|
||
def _convert_checkpoint(config, original_state_dict, vocab_list, original_vocab_list): | ||
state_dict = {} | ||
for key, value in original_state_dict.items(): | ||
key = key.replace("LayerNorm", "layer_norm") | ||
key = key.replace("gamma", "weight") | ||
key = key.replace("beta", "bias") | ||
if key.startswith("bert"): | ||
state_dict["splice" + key] = value | ||
continue | ||
if key.startswith("cls"): | ||
key = "lm_head" + key[15:] | ||
state_dict[key] = value | ||
continue | ||
state_dict[key] = value | ||
|
||
state_vocab_size = state_dict["splicebert.embeddings.word_embeddings.weight"].size(0) | ||
original_vocab_size = len(original_vocab_list) | ||
if state_vocab_size != original_vocab_size: | ||
raise ValueError( | ||
f"Vocabulary size do not match. Expected to have {original_vocab_size}, but got {state_vocab_size}." | ||
) | ||
word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | ||
word_embed_weight = word_embed.weight.data | ||
predictions_decoder_weight = torch.zeros((config.vocab_size, config.hidden_size)) | ||
predictions_bias = torch.zeros(config.vocab_size) | ||
# nn.init.normal_(pos_embed.weight, std=0.02) | ||
for original_index, original_token in enumerate(original_vocab_list): | ||
new_index = vocab_list.index(original_token) | ||
word_embed_weight[new_index] = state_dict["splicebert.embeddings.word_embeddings.weight"][original_index] | ||
predictions_decoder_weight[new_index] = state_dict["lm_head.decoder.weight"][original_index] | ||
predictions_bias[new_index] = state_dict["lm_head.decoder.bias"][original_index] | ||
state_dict["splicebert.embeddings.word_embeddings.weight"] = word_embed_weight | ||
state_dict["lm_head.decoder.weight"] = predictions_decoder_weight | ||
state_dict["lm_head.decoder.bias"] = state_dict["lm_head.bias"] = predictions_bias | ||
return state_dict | ||
|
||
|
||
def convert_checkpoint(convert_config): | ||
config = chanfig.load(os.path.join(convert_config.checkpoint_path, "config.json")) | ||
config.hidden_dropout = config.pop("hidden_dropout_prob", 0.1) | ||
config.attention_dropout = config.pop("attention_probs_dropout_prob", 0.1) | ||
config.nmers = int(convert_config.checkpoint_path.split("/")[-1][0]) | ||
vocab_list = get_vocab_list(config.nmers) | ||
config = Config.from_dict(config) | ||
del config._name_or_path | ||
config.architectures = ["SpliceBertModel"] | ||
config.vocab_size = len(vocab_list) | ||
|
||
model = Model(config) | ||
|
||
ckpt = torch.load( | ||
os.path.join(convert_config.checkpoint_path, "pytorch_model.bin"), map_location=torch.device("cpu") | ||
) | ||
original_vocab_list = [] | ||
for char in open(os.path.join(convert_config.checkpoint_path, "vocab.txt")).read().splitlines(): # noqa: SIM115 | ||
if char.startswith("["): | ||
char = char.lower().replace("[", "<").replace("]", ">") | ||
if char == "T": | ||
char = "U" | ||
if char == "<sep>": | ||
char = "<eos>" | ||
original_vocab_list.append(char) | ||
state_dict = _convert_checkpoint(config, ckpt, vocab_list, original_vocab_list) | ||
|
||
model.load_state_dict(state_dict) | ||
model.save_pretrained(convert_config.output_path, safe_serialization=True) | ||
model.save_pretrained(convert_config.output_path, safe_serialization=False) | ||
chanfig.NestedDict(get_special_tokens_map()).json( | ||
os.path.join(convert_config.output_path, "special_tokens_map.json") | ||
) | ||
chanfig.NestedDict(get_tokenizer_config()).json(os.path.join(convert_config.output_path, "tokenizer_config.json")) | ||
|
||
if convert_config.push_to_hub: | ||
if HfApi is None: | ||
raise ImportError("Please install huggingface_hub to push to the hub.") | ||
api = HfApi() | ||
api.create_repo( | ||
convert_config.repo_id, | ||
token=convert_config.token, | ||
exist_ok=True, | ||
) | ||
api.upload_folder( | ||
repo_id=convert_config.repo_id, folder_path=convert_config.output_path, token=convert_config.token | ||
) | ||
|
||
|
||
@chanfig.configclass | ||
class ConvertConfig: | ||
checkpoint_path: str | ||
output_path: Optional[str] = None | ||
push_to_hub: bool = False | ||
repo_id: Optional[str] = output_path | ||
token: Optional[str] = None | ||
|
||
def post(self): | ||
if self.output_path is None: | ||
self.output_path = self.checkpoint_path.split("/")[-1].lower() | ||
if self.repo_id is None: | ||
self.repo_id = f"multimolecule/{self.output_path}" | ||
|
||
|
||
if __name__ == "__main__": | ||
config = ConvertConfig() | ||
config.parse() # type: ignore[attr-defined] | ||
convert_checkpoint(config) |
Oops, something went wrong.