-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Zhiyuan Chen <[email protected]>
- Loading branch information
1 parent
dfab4b1
commit 98c27f5
Showing
3 changed files
with
1,464 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# Copyright 2022 Facebook and The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from typing import TYPE_CHECKING | ||
|
||
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available | ||
|
||
_import_structure = { | ||
"configuration_esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig"], | ||
"tokenization_esm": ["EsmTokenizer"], | ||
} | ||
|
||
try: | ||
if not is_torch_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
_import_structure["modeling_esm"] = [ | ||
"ESM_PRETRAINED_MODEL_ARCHIVE_LIST", | ||
"EsmForMaskedLM", | ||
"EsmForSequenceClassification", | ||
"EsmForTokenClassification", | ||
"EsmModel", | ||
"EsmPreTrainedModel", | ||
] | ||
_import_structure["modeling_esmfold"] = ["EsmForProteinFolding", "EsmFoldPreTrainedModel"] | ||
|
||
try: | ||
if not is_tf_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
_import_structure["modeling_tf_esm"] = [ | ||
"TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST", | ||
"TFEsmForMaskedLM", | ||
"TFEsmForSequenceClassification", | ||
"TFEsmForTokenClassification", | ||
"TFEsmModel", | ||
"TFEsmPreTrainedModel", | ||
] | ||
|
||
if TYPE_CHECKING: | ||
from .configuration_esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig | ||
from .tokenization_esm import EsmTokenizer | ||
|
||
try: | ||
if not is_torch_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
from .modeling_esm import ( | ||
ESM_PRETRAINED_MODEL_ARCHIVE_LIST, | ||
EsmForMaskedLM, | ||
EsmForSequenceClassification, | ||
EsmForTokenClassification, | ||
EsmModel, | ||
EsmPreTrainedModel, | ||
) | ||
from .modeling_esmfold import EsmFoldPreTrainedModel, EsmForProteinFolding | ||
|
||
try: | ||
if not is_tf_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
from .modeling_tf_esm import ( | ||
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, | ||
TFEsmForMaskedLM, | ||
TFEsmForSequenceClassification, | ||
TFEsmForTokenClassification, | ||
TFEsmModel, | ||
TFEsmPreTrainedModel, | ||
) | ||
|
||
|
||
else: | ||
import sys | ||
|
||
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
# coding=utf-8 | ||
""" ESM model configuration""" | ||
|
||
from dataclasses import asdict, dataclass | ||
from typing import Optional | ||
|
||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.utils import logging | ||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
class RnaFmConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model | ||
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||
defaults will yield a similar configuration to that of the ESM | ||
[ml4bio/RNA-FM](https://github.com/ml4bio/RNA-FM) architecture. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*): | ||
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`ESMModel`]. | ||
mask_token_id (`int`, *optional*): | ||
The index of the mask token in the vocabulary. This must be included in the config because of the | ||
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. | ||
pad_token_id (`int`, *optional*): | ||
The index of the padding token in the vocabulary. This must be included in the config because certain parts | ||
of the ESM code use this instead of the attention mask. | ||
hidden_size (`int`, *optional*, defaults to 768): | ||
Dimensionality of the encoder layers and the pooler layer. | ||
num_hidden_layers (`int`, *optional*, defaults to 12): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 12): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
intermediate_size (`int`, *optional*, defaults to 3072): | ||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | ||
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for the attention probabilities. | ||
max_position_embeddings (`int`, *optional*, defaults to 1026): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | ||
The epsilon used by the layer normalization layers. | ||
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | ||
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. | ||
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | ||
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | ||
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | ||
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | ||
is_decoder (`bool`, *optional*, defaults to `False`): | ||
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
emb_layer_norm_before (`bool`, *optional*): | ||
Whether to apply layer normalization after embeddings but before the main stem of the network. | ||
token_dropout (`bool`, defaults to `False`): | ||
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. | ||
Examples: | ||
```python | ||
>>> from multimolecule import RnaFmModel, RnaFmConfig | ||
>>> # Initializing a RnaFm style configuration >>> configuration = RnaFmConfig() | ||
>>> # Initializing a model from the configuration >>> model = RnaFmModel(configuration) | ||
>>> # Accessing the model configuration >>> configuration = model.config | ||
```""" | ||
|
||
model_type = "rnafm" | ||
|
||
def __init__( | ||
self, | ||
vocab_size=None, | ||
mask_token_id=None, | ||
pad_token_id=None, | ||
hidden_size=768, | ||
num_hidden_layers=12, | ||
num_attention_heads=12, | ||
intermediate_size=3072, | ||
hidden_dropout_prob=0.1, | ||
attention_probs_dropout_prob=0.1, | ||
max_position_embeddings=1026, | ||
initializer_range=0.02, | ||
layer_norm_eps=1e-12, | ||
position_embedding_type="rotary", | ||
use_cache=True, | ||
emb_layer_norm_before=None, | ||
token_dropout=False, | ||
is_folding_model=False, | ||
**kwargs, | ||
): | ||
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) | ||
|
||
self.vocab_size = vocab_size | ||
self.hidden_size = hidden_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.intermediate_size = intermediate_size | ||
self.hidden_dropout_prob = hidden_dropout_prob | ||
self.attention_probs_dropout_prob = attention_probs_dropout_prob | ||
self.max_position_embeddings = max_position_embeddings | ||
self.initializer_range = initializer_range | ||
self.layer_norm_eps = layer_norm_eps | ||
self.position_embedding_type = position_embedding_type | ||
self.use_cache = use_cache | ||
self.emb_layer_norm_before = emb_layer_norm_before | ||
self.token_dropout = token_dropout | ||
self.is_folding_model = is_folding_model |
Oops, something went wrong.