-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Zhiyuan Chen <[email protected]>
- Loading branch information
1 parent
c4f1893
commit d1bba61
Showing
6 changed files
with
1,519 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
from transformers import ( | ||
AutoConfig, | ||
AutoModel, | ||
AutoModelForMaskedLM, | ||
AutoModelForPreTraining, | ||
AutoModelForSequenceClassification, | ||
AutoModelForTokenClassification, | ||
AutoModelWithLMHead, | ||
AutoTokenizer, | ||
) | ||
|
||
from multimolecule.tokenizers.rna import RnaTokenizer | ||
|
||
from .configuration_utrlm import UtrLmConfig | ||
from .modeling_utrlm import ( | ||
UtrLmForMaskedLM, | ||
UtrLmForPretraining, | ||
UtrLmForSequenceClassification, | ||
UtrLmForTokenClassification, | ||
UtrLmModel, | ||
) | ||
|
||
__all__ = [ | ||
"UtrLmConfig", | ||
"UtrLmModel", | ||
"RnaTokenizer", | ||
"UtrLmForMaskedLM", | ||
"UtrLmForSequenceClassification", | ||
"UtrLmForTokenClassification", | ||
] | ||
|
||
AutoConfig.register("utrlm", UtrLmConfig) | ||
AutoModel.register(UtrLmConfig, UtrLmModel) | ||
AutoModelForMaskedLM.register(UtrLmConfig, UtrLmForMaskedLM) | ||
AutoModelForPreTraining.register(UtrLmConfig, UtrLmForPretraining) | ||
AutoModelForSequenceClassification.register(UtrLmConfig, UtrLmForSequenceClassification) | ||
AutoModelForTokenClassification.register(UtrLmConfig, UtrLmForTokenClassification) | ||
AutoModelWithLMHead.register(UtrLmConfig, UtrLmForTokenClassification) | ||
AutoTokenizer.register(UtrLmConfig, RnaTokenizer) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
from transformers.utils import logging | ||
|
||
from ..configuration_utils import HeadConfig, MaskedLMHeadConfig, PretrainedConfig | ||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
class UtrLmConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`UtrLmModel`]. It is used to instantiate a RNA-FM | ||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||
defaults will yield a similar configuration to that of the RNA-FM | ||
[a96123155/UTR-LM](https://github.com/a96123155/UTR-LM) architecture. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*): | ||
Vocabulary size of the RNA-FM model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`UtrLmModel`]. | ||
hidden_size (`int`, *optional*, defaults to 768): | ||
Dimensionality of the encoder layers and the pooler layer. | ||
num_hidden_layers (`int`, *optional*, defaults to 12): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 12): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
intermediate_size (`int`, *optional*, defaults to 3072): | ||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | ||
hidden_dropout (`float`, *optional*, defaults to 0.1): | ||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||
attention_dropout (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for the attention probabilities. | ||
max_position_embeddings (`int`, *optional*, defaults to 1026): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | ||
The epsilon used by the layer normalization layers. | ||
pad_token_id (`int`, *optional*, defaults to 0): | ||
The index of the padding token in the vocabulary. This must be included in the config because certain parts | ||
of the RnaBert code use this instead of the attention mask. | ||
bos_token_id (`int`, *optional*, defaults to 1): | ||
The index of the bos token in the vocabulary. This must be included in the config because of the | ||
contact and other prediction heads removes the bos and padding token when predicting outputs. | ||
mask_token_id (`int`, *optional*, defaults to 4): | ||
The index of the mask token in the vocabulary. This must be included in the config because of the | ||
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. | ||
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | ||
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. | ||
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | ||
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | ||
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | ||
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | ||
is_decoder (`bool`, *optional*, defaults to `False`): | ||
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
emb_layer_norm_before (`bool`, *optional*): | ||
Whether to apply layer normalization after embeddings but before the main stem of the network. | ||
token_dropout (`bool`, defaults to `False`): | ||
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. | ||
Examples: | ||
```python | ||
>>> from multimolecule import UtrLmModel, UtrLmConfig | ||
>>> # Initializing a RNA-FM style configuration >>> configuration = UtrLmConfig() | ||
>>> # Initializing a model from the configuration >>> model = UtrLmModel(configuration) | ||
>>> # Accessing the model configuration >>> configuration = model.config | ||
``` | ||
""" | ||
|
||
model_type = "utrlm" | ||
|
||
def __init__( | ||
self, | ||
vocab_size=25, | ||
hidden_size=640, | ||
num_hidden_layers=12, | ||
num_attention_heads=20, | ||
intermediate_size=2560, | ||
hidden_act="gelu", | ||
hidden_dropout=0.1, | ||
attention_dropout=0.1, | ||
max_position_embeddings=1026, | ||
initializer_range=0.02, | ||
layer_norm_eps=1e-12, | ||
pad_token_id=0, | ||
bos_token_id=1, | ||
mask_token_id=4, | ||
position_embedding_type="rotary", | ||
use_cache=True, | ||
emb_layer_norm_before=None, | ||
token_dropout=True, | ||
head=None, | ||
lm_head=None, | ||
structure_head=None, | ||
supervised_head=None, | ||
**kwargs, | ||
): | ||
if head is None: | ||
head = {} | ||
head.setdefault("hidden_size", hidden_size) | ||
if "problem_type" in kwargs: | ||
head.setdefault("problem_type", kwargs["problem_type"]) | ||
if "num_labels" in kwargs: | ||
head.setdefault("num_labels", kwargs["num_labels"]) | ||
if lm_head is None: | ||
lm_head = {} | ||
lm_head.setdefault("hidden_size", hidden_size) | ||
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, mask_token_id=mask_token_id, **kwargs) | ||
|
||
self.vocab_size = vocab_size | ||
self.hidden_size = hidden_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.intermediate_size = intermediate_size | ||
self.hidden_act = hidden_act | ||
self.hidden_dropout = hidden_dropout | ||
self.attention_dropout = attention_dropout | ||
self.max_position_embeddings = max_position_embeddings | ||
self.initializer_range = initializer_range | ||
self.layer_norm_eps = layer_norm_eps | ||
self.position_embedding_type = position_embedding_type | ||
self.use_cache = use_cache | ||
self.emb_layer_norm_before = emb_layer_norm_before | ||
self.token_dropout = token_dropout | ||
self.head = HeadConfig(**head) | ||
self.lm_head = MaskedLMHeadConfig(**lm_head) | ||
self.structure_head = HeadConfig(**structure_head) if structure_head is not None else None | ||
self.supervised_head = HeadConfig(**supervised_head) if supervised_head is not None else None |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
import os | ||
from typing import Optional | ||
|
||
import chanfig | ||
import torch | ||
from torch import nn | ||
|
||
from multimolecule.models import UtrLmConfig as Config | ||
from multimolecule.models import UtrLmForPretraining as Model | ||
from multimolecule.tokenizers.rna.utils import get_special_tokens_map, get_tokenizer_config, get_vocab_list | ||
|
||
try: | ||
from huggingface_hub import HfApi | ||
except ImportError: | ||
HfApi = None | ||
|
||
|
||
torch.manual_seed(1013) | ||
|
||
CONFIG = { | ||
"architectures": ["UtrLmModel"], | ||
"attention_dropout": 0.1, | ||
"hidden_act": "gelu", | ||
"hidden_dropout": 0.1, | ||
"hidden_size": 128, | ||
"intermediate_size": 512, | ||
"max_position_embeddings": 1026, | ||
"num_attention_heads": 16, | ||
"num_hidden_layers": 6, | ||
"max_tokens_per_msa": 2**14, | ||
"num_labels": 1, | ||
} | ||
|
||
original_vocab_list = ["<pad>", "<eos>", "<unk>", "A", "G", "C", "U", "<cls>", "<mask>", "<eos>"] | ||
vocab_list = get_vocab_list() | ||
|
||
|
||
def _convert_checkpoint(config, original_state_dict): | ||
state_dict = {} | ||
for key, value in original_state_dict.items(): | ||
if key.startswith("module."): | ||
key = key[7:] | ||
key = "utrlm." + key | ||
key = key.replace("LayerNorm", "layer_norm") | ||
key = key.replace("gamma", "weight") | ||
key = key.replace("beta", "bias") | ||
key = key.replace("utrlm.encoder.emb_layer_norm_before", "utrlm.embeddings.layer_norm") | ||
key = key.replace("utrlm.emb_layer_norm_after", "utrlm.encoder.emb_layer_norm_after") | ||
key = key.replace("utrlm.embed_tokens", "utrlm.embeddings.word_embeddings") | ||
key = key.replace("rot_emb", "rotary_embeddings") | ||
key = key.replace("layers", "encoder.layer") | ||
key = key.replace("self_attn", "attention.self") | ||
key = key.replace("q_proj", "query") | ||
key = key.replace("k_proj", "key") | ||
key = key.replace("v_proj", "value") | ||
key = key.replace("self.out_proj", "output.dense") | ||
key = key.replace("self_layer_norm", "layer_norm") | ||
key = key.replace("final_layer_norm", "layer_norm") | ||
key = key.replace("fc1", "intermediate.dense") | ||
key = key.replace("fc2", "output.dense") | ||
key = key.replace("regression", "decoder") | ||
key = key.replace("utrlm.lm_head", "pretrain_head.predictions") | ||
key = key.replace("predictions.dense", "predictions.transform.dense") | ||
key = key.replace("predictions.layer_norm", "predictions.transform.layer_norm") | ||
key = key.replace("predictions.weight", "predictions.decoder.weight") | ||
key = key.replace("utrlm.contact_head", "pretrain_head.contact") | ||
key = key.replace("utrlm.structure_linear", "pretrain_head.structure.decoder") | ||
key = key.replace("utrlm.supervised_linear", "pretrain_head.supervised.decoder") | ||
state_dict[key] = value | ||
|
||
state_vocab_size = state_dict["utrlm.embeddings.word_embeddings.weight"].size(0) | ||
original_vocab_size = len(original_vocab_list) | ||
if state_vocab_size != original_vocab_size: | ||
raise ValueError( | ||
f"Vocabulary size do not match. Expected to have {original_vocab_size}, but got {state_vocab_size}." | ||
) | ||
word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | ||
word_embed_weight = word_embed.weight.data | ||
predictions_decoder_weight = torch.zeros((config.vocab_size, config.hidden_size)) | ||
predictions_bias = torch.zeros(config.vocab_size) | ||
# nn.init.normal_(pos_embed.weight, std=0.02) | ||
for original_index, original_token in enumerate(original_vocab_list): | ||
new_index = vocab_list.index(original_token) | ||
word_embed_weight[new_index] = state_dict["utrlm.embeddings.word_embeddings.weight"][original_index] | ||
predictions_decoder_weight[new_index] = state_dict["pretrain_head.predictions.decoder.weight"][original_index] | ||
predictions_bias[new_index] = state_dict["pretrain_head.predictions.bias"][original_index] | ||
state_dict["utrlm.embeddings.word_embeddings.weight"] = word_embed_weight | ||
state_dict["pretrain_head.predictions.decoder.weight"] = predictions_decoder_weight | ||
state_dict["pretrain_head.predictions.decoder.bias"] = state_dict["pretrain_head.predictions.bias"] = ( | ||
predictions_bias | ||
) | ||
return state_dict | ||
|
||
|
||
def convert_checkpoint(convert_config): | ||
config = chanfig.FlatDict(CONFIG) | ||
config.supervised_head = {"num_labels": 1} | ||
if "4.1" in convert_config.checkpoint_path: | ||
config.structure_head = {"num_labels": 3} | ||
config = Config.from_dict(config) | ||
config.vocab_size = len(vocab_list) | ||
|
||
model = Model(config) | ||
|
||
ckpt = torch.load(convert_config.checkpoint_path, map_location=torch.device("cpu")) | ||
state_dict = _convert_checkpoint(config, ckpt) | ||
|
||
model.load_state_dict(state_dict) | ||
model.save_pretrained(convert_config.output_path, safe_serialization=True) | ||
model.save_pretrained(convert_config.output_path, safe_serialization=False) | ||
chanfig.NestedDict(get_special_tokens_map()).json( | ||
os.path.join(convert_config.output_path, "special_tokens_map.json") | ||
) | ||
chanfig.NestedDict(get_tokenizer_config()).json(os.path.join(convert_config.output_path, "tokenizer_config.json")) | ||
|
||
if convert_config.push_to_hub: | ||
if HfApi is None: | ||
raise ImportError("Please install huggingface_hub to push to the hub.") | ||
api = HfApi() | ||
api.create_repo( | ||
convert_config.repo_id, | ||
token=convert_config.token, | ||
exist_ok=True, | ||
) | ||
api.upload_folder( | ||
repo_id=convert_config.repo_id, folder_path=convert_config.output_path, token=convert_config.token | ||
) | ||
|
||
|
||
@chanfig.configclass | ||
class ConvertConfig: | ||
checkpoint_path: str | ||
output_path: str = Config.model_type | ||
push_to_hub: bool = False | ||
repo_id: str = f"multimolecule/{output_path}" | ||
token: Optional[str] = None | ||
|
||
|
||
if __name__ == "__main__": | ||
config = ConvertConfig() | ||
config.parse() # type: ignore[attr-defined] | ||
convert_checkpoint(config) |
Oops, something went wrong.