Skip to content

Commit

Permalink
Demo: RAG service
Browse files Browse the repository at this point in the history
Adds APIs for a basic RAG service.

Signed-off-by: Brent Salisbury <[email protected]>
  • Loading branch information
nerdalert committed Oct 30, 2024
1 parent ac3518c commit 9f0ad03
Show file tree
Hide file tree
Showing 3 changed files with 2,893 additions and 54 deletions.
283 changes: 279 additions & 4 deletions docling_serve/app.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
import base64
import os
from contextlib import asynccontextmanager
from enum import Enum
from io import BytesIO
from pathlib import Path
from typing import Any, Dict, Union
from typing import Any, Dict, Iterable, List, Union

import httpx
from docling.datamodel.base_models import (
Expand All @@ -12,11 +14,19 @@
)
from docling.datamodel.document import ConversionResult, DocumentConversionInput
from docling.document_converter import DocumentConverter
from fastapi import FastAPI, HTTPException
from fastapi import FastAPI, HTTPException, File, UploadFile
from pydantic import BaseModel

from docling_serve.settings import Settings

from llama_index.core.readers.base import BasePydanticReader
from llama_index.core.schema import Document as LIDocument
from llama_index.core.node_parser import MarkdownNodeParser
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.milvus import MilvusVectorStore
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.llms.openai import OpenAI
from pymilvus import connections, Collection, utility

class HttpSource(BaseModel):
url: str
Expand Down Expand Up @@ -45,8 +55,58 @@ class ConvertDocumentResponse(BaseModel):
]


# New models for RAG functionality
class CreateCollectionRequest(BaseModel):
collection_name: str


class QueryRequest(BaseModel):
question: str


class DocumentMetadata(BaseModel):
dl_doc_hash: str


models = {}

# Setting TOKENIZERS_PARALLELISM to avoid warnings
os.environ["TOKENIZERS_PARALLELISM"] = "false"
MILVUS_LOCAL_FILE_PATH = "/Users/brent/code/docling/rag-svc-pr/docling-serve"


class DoclingPDFReader(BasePydanticReader):
class ParseType(str, Enum):
MARKDOWN = "markdown"
# JSON = "json"

parse_type: ParseType = ParseType.MARKDOWN

def lazy_load_data(
self, file_path: Union[str, List[str]]
) -> Iterable[LIDocument]:
file_paths = file_path if isinstance(file_path, list) else [file_path]
converter = DocumentConverter()
for source in file_paths:
dl_doc = converter.convert_single(source).output
if self.parse_type == self.ParseType.MARKDOWN:
text = dl_doc.export_to_markdown()
else:
raise RuntimeError(
f"Unexpected parse type encountered: {self.parse_type}"
)
excl_metadata_keys = ["dl_doc_hash"]
li_doc = LIDocument(
doc_id=dl_doc.file_info.document_hash,
text=text,
excluded_embed_metadata_keys=excl_metadata_keys,
excluded_llm_metadata_keys=excl_metadata_keys,
)
li_doc.metadata = DocumentMetadata(
dl_doc_hash=dl_doc.file_info.document_hash,
).model_dump()
yield li_doc


@asynccontextmanager
async def lifespan(app: FastAPI):
Expand All @@ -56,6 +116,34 @@ async def lifespan(app: FastAPI):
pipeline_options.do_ocr = settings.do_ocr
pipeline_options.do_table_structure = settings.do_table_structure
models["converter"] = DocumentConverter(pipeline_options=pipeline_options)

# Embedding model
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
models["embed_model"] = embed_model

# Calculate the dimension once and store it
sample_embedding = embed_model.get_text_embedding("sample text")
models["embed_dim"] = len(sample_embedding)

# Use OpenAI API for the Instructlab endpoint
models["llm"] = OpenAI(
api_key="dummy-key",
api_base="http://127.0.0.1:8080/v1",
model="merlinite-7b-lab-Q4_K_M.gguf",
max_tokens=1500,
temperature=0.1,
)

# Node Parser
models["node_parser"] = MarkdownNodeParser()

# Check if database exists, if not, create it
if not os.path.exists(MILVUS_LOCAL_FILE_PATH):
os.makedirs(MILVUS_LOCAL_FILE_PATH)
print(f"Created Milvus storage directory at {MILVUS_LOCAL_FILE_PATH}")
else:
print(f"Milvus storage directory exists at {MILVUS_LOCAL_FILE_PATH}")

yield

models.clear()
Expand All @@ -71,7 +159,6 @@ async def lifespan(app: FastAPI):
def convert_pdf_document(
body: ConvertDocumentRequest,
) -> ConvertDocumentResponse:

filename: str
buf: BytesIO

Expand All @@ -83,7 +170,7 @@ def convert_pdf_document(
buf = BytesIO(http_res.content)
filename = Path(
body.http_source.url
).name # TODO: use better way to detect filename, e.g. from Content-Disposition
).name

docs_input = DocumentConversionInput.from_streams(
[DocumentStream(filename=filename, stream=buf)]
Expand All @@ -94,3 +181,191 @@ def convert_pdf_document(
raise HTTPException(status_code=500, detail={"errors": result.errors})

return ConvertDocumentResponse(content_md=result.render_as_markdown())


@app.get("/collections")
def list_collections():
try:
connections.connect(uri=f"{MILVUS_LOCAL_FILE_PATH}/milvus_llamaindex.db")

# List all collections
collections = utility.list_collections()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))

return {"collections": collections}


@app.delete("/collections/{collection_name}")
def delete_collection(collection_name: str):
# Connect to Milvus using the local file path
connections.connect(uri=f"{MILVUS_LOCAL_FILE_PATH}/milvus_llamaindex.db")

# Check if the collection exists
if collection_name not in utility.list_collections():
raise HTTPException(status_code=404, detail=f"Collection '{collection_name}' does not exist.")

try:
# Drop the collection
utility.drop_collection(collection_name)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))

return {"message": f"Collection '{collection_name}' deleted successfully"}


@app.post("/collections/{collection_name}/documents/file")
async def ingest_document_file(
collection_name: str,
file: UploadFile = File(...)
):
# Handle the file upload
file_content = await file.read()
buf = BytesIO(file_content)
filename = file.filename

# Convert the document and ingest into the vector DB
return await process_and_ingest_document(collection_name, filename, buf)


@app.post("/collections/{collection_name}/documents/url")
async def ingest_document_http(
collection_name: str,
body: ConvertDocumentHttpSourceRequest
):
# Fetch the document from the URL
http_res = httpx.get(body.http_source.url, headers=body.http_source.headers)
if http_res.status_code != 200:
raise HTTPException(
status_code=400,
detail=f"Failed to fetch document from URL: {body.http_source.url}",
)
buf = BytesIO(http_res.content)
filename = Path(body.http_source.url).name

# Convert the document and ingest into the vector DB
return await process_and_ingest_document(collection_name, filename, buf)


async def process_and_ingest_document(collection_name: str, filename: str, buf: BytesIO):
# Convert the document to markdown using the converter
converter = models.get("converter")
docs_input = DocumentConversionInput.from_streams(
[DocumentStream(filename=filename, stream=buf)]
)
result: ConversionResult = next(converter.convert(docs_input), None)

if result is None or result.status != ConversionStatus.SUCCESS:
raise HTTPException(status_code=500, detail={"errors": result.errors})

# Get the markdown content
markdown_content = result.render_as_markdown()

# Create a LlamaIndex document
li_doc = LIDocument(
doc_id=result.output.file_info.document_hash,
text=markdown_content,
excluded_embed_metadata_keys=["dl_doc_hash"],
excluded_llm_metadata_keys=["dl_doc_hash"],
)
li_doc.metadata = DocumentMetadata(
dl_doc_hash=result.output.file_info.document_hash,
).model_dump()

# Transformations
node_parser = models.get("node_parser")
transformations = [node_parser]

# Embed model
embed_model = models.get("embed_model")

# Index name and parameters (must match the ones used during collection creation)
index_name = "default_index"
index_params = {
"metric_type": "IP",
"index_type": "HNSW",
"params": {"M": 8, "efConstruction": 64},
}

# Initialize the vector store for the collection
vector_store = MilvusVectorStore(
collection_name=collection_name,
dim=len(embed_model.get_text_embedding("hi")),
index_params=index_params,
index_name=index_name,
overwrite=False, # Do not overwrite existing collection

)

# Create storage context
storage_context = StorageContext.from_defaults(vector_store=vector_store)

# Create or update the index
index = VectorStoreIndex.from_documents(
documents=[li_doc],
embed_model=embed_model,
storage_context=storage_context,
transformations=transformations,
)

# Return success
return {"message": "Document ingested successfully into collection"}


@app.post("/collections/{collection_name}/query")
def query_collection(collection_name: str, body: QueryRequest):
question = body.question

# Embed model
embed_model = models.get("embed_model")

# Use the Instructlab API initialized earlier
llm = models.get("llm")

# Initialize the vector store for the collection
vector_store = MilvusVectorStore(
collection_name=collection_name,
)

# Check if the collection exists
if collection_name not in vector_store.client.list_collections():
raise HTTPException(
status_code=400,
detail=f"Collection '{collection_name}' does not exist.",
)

# Check if _collection is loaded, otherwise load it
if not hasattr(vector_store, '_collection') or vector_store._collection is None:
vector_store._collection = Collection(collection_name, using=vector_store.client._using)

# Load the index
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
embed_model=embed_model,
)

# Create query engine
query_engine = index.as_query_engine(llm=llm)

# Form the prompt and perform the query
prompt = f"Question: {question}\nProvide a detailed answer based on the document."
query_res = query_engine.query(prompt)

response = {
"query": question,
"answer": query_res.response.strip(),
"sources": [{"text": node.node.get_text(), "metadata": node.node.metadata} for node in query_res.source_nodes]
}

# Print the response to the console
print("Query:", response["query"])
print("Answer:", response["answer"])

# Print sources and metadata
if "sources" in response:
print("Sources:")
for source in response["sources"]:
print(f"Text: {source['text']}")
print(f"Metadata: {source['metadata']}")

return response
Loading

0 comments on commit 9f0ad03

Please sign in to comment.