This repository can create an in-silico brain phantom containing positive and negative magnetic susceptibility (
Simulated
Region |
|
|
|
---|---|---|---|
Caudate nucleus | 0.044 | 0.0527 | -0.0087 |
Globus pallidus | 0.131 | 0.1437 | -0.0132 |
Putamen | 0.038 | 0.0471 | -0.0091 |
Red nucleus | 0.1 | 0.01109 | -0.0109 |
Dentate nucleus | 0.152 | 0.1684 | -0.0164 |
Substantia nigra | 0.111 | 0.1224 | -0.0114 |
Thalamus | 0.02 | 0.0509 | -0.0309 |
White matter | -0.03 | 0.0059 | -0.0359 |
Grey matter | 0.02 | 0.0392 | -0.0192 |
CSF | 0.019 | 0.0275 | -0.0085 |
Table 1: Simulated average
Pre-scanned
where
Where
Region | ||
---|---|---|
Body of the corpus callosum | 0.032 | -0.0512 |
Splenium of the corpus callosum | 0.024 | -0.0522 |
Genu of the corpus callosum | 0.014 | -0.0382 |
Anterior limb of the internal capsule | 0.016 | -0.0512 |
Posterior thalamic radiations | 0.016 | -0.0592 |
Superior corona radiata | 0.005 | -0.0442 |
Posterior corona radiata | 0.008 | -0.0542 |
Anterior corona radiata | 0.006 | -0.0462 |
Posterior limb of the internal capsule | -0.015 | -0.0382 |
Superior longitudinal fascicle | -0.015 | -0.0372 |
Table 2: Simulated average anisotropy values,
Finally, our phantom allows us to simulate a transversal relaxation time
Region |
|
---|---|
Caudate nucleus | 57.46 |
Globus pallidus | 41.47 |
Putamen | 50.44 |
Red nucleus | 44.07 |
Dentate nucleus | 71.71 |
Substantia nigra | 47.26 |
Thalamus | 56.62 |
White matter | 45.54 |
Grey matter | 84.71 |
CSF | 1029 |
Table 3: Simulated average
The created phantom can be used to simulate gradient-echo (GRE) data using the following equation:
where D is the magnetic dipole kernel,
The phantom and accompanying code can be used to simulate MR signals and evaluate various magnetic susceptibility-separation techniques, such as χ-separation
- Susceptibility-separation-phantom repository.
- Matlab license.
- Nifti toolbox.
- QSM challenge 2.0 repository.
After downloading the QSM challenge 2.0 repository and this repository, replace the following files from the QSM Challenge 2.0 repository with the corresponding files from this repository:
QSM Challenge 2.0 version Our version
------------------------------- ---------------------
MacroCreateSusceptibilityPhantom.m -------> PhantomCreation.m
CreateOwnRealisticPhantom.m -------> PhantomCreationFunction.m
MacroCreateSimulationData.m -------> DataSimulation.m
CreateSimulatedData.m -------> DataSimulationFunction.m
DataSimulation.m -------> GRESimulation.m
parameters.mat -------> SusceptibilityValues.mat
In addition, make sure to add these files to the main QSM challenge file directory: Mask.m, Anisotropy.m, T2_star.nii.gz, white_matter_mask.nii.gz.
Once you have all of the required files, follow these steps to create positive and negative susceptibility maps and simulate gradient-echo data:
- To create susceptibility phantoms: run PhantomCreation.m
- This script will create susceptibility phantoms:
$\chi^{tot}$ from QSM challenge 2.0 and additionally$\chi^{+}$ and$\chi^{-}$ phantoms with and without anisotropy. In addition, it will simulate an$R_2$ map$(\frac{1}{T_2})$ . This script will also generate spatially variable and constant$D_r$ maps (to include or exclude anisotropy)
- To simulate GRE magnitude and phase data: run DataSimulation.m When simulating consider checking the input of the Anisotropy.m function
- if you want to simulate data with anisotropy select Asotropy as “true”.
- if you want to simulate without anisotropy select Anisotropy as “ false”.
- We recommend using this phantom for validating susceptibility separation algorithms.
For this you will need the following script:
- CalculateR2prime.m: Calculate
$R^{'}_ {2}$ map from$R_2$ and$R^{*}_ {2}$ . At this point, an$R_2$ map is already simulated. To obtain an$R^{*}_ {2}$ map, we recommend applying a mono-exponential fitting to the simulated magnitude data using qMRLab software.
- To visualize a color-coded white matter fiber orientation map run the script: GenerateRgbMap.m
All the resulting maps are available in the repository as essential reference points for anyone seeking to reproduce the work.
If you have any questions or encounter issues, please don't hesitate to open an issue, and we will respond as soon as possible to assist you.
- Marques, J. P. et al. QSM reconstruction challenge 2.0: A realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures. Magn. Reson. Med. 86, 526–542 (2021).
- Deistung, A. et al. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage 65, 299–314 (2013).
- Buch, S. et al. Susceptibility mapping of air, bone, and calcium in the head. Magn. Reson. Med. 73, 2185–2194 (2015).
- Hallgren, B. & Sourander, P. The effect of age on the non-haemin iron in the human brain. J. Neurochem. 3, 41–51 (1958).
- Li, X. et al. Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7 T. Neuroimage 62, 314–330 (2012).
- Sibgatulin, R., Güllmar, D., Deistung, A., Ropele, S. & Reichenbach, J. R. In vivo assessment of anisotropy of apparent magnetic susceptibility in white matter from a single orientation acquisition. Neuroimage 241, 118442 (2021).
- Sibgatulin, R. et al. Magnetic susceptibility anisotropy in normal-appearing white matter in multiple sclerosis from single-orientation acquisition. Neuroimage Clin 35, 103059 (2022).
- Kumar, R., Delshad, S., Macey, P. M., Woo, M. A. & Harper, R. M. Development of T2-relaxation values in regional brain sites during adolescence. Magn. Reson. Imaging 29, 185–193 (2011).
- Kumar, R., Delshad, S., Woo, M. A., Macey, P. M. & Harper, R. M. Age-related regional brain T2-relaxation changes in healthy adults. J. Magn. Reson. Imaging 35, 300–308 (2012).
- Shin, H.-G. et al. χ-separation: Magnetic susceptibility source separation toward iron and myelin mapping in the brain. Neuroimage 240, 118371 (2021).
- Li, Z. et al. APART-QSM: An improved sub-voxel quantitative susceptibility mapping for susceptibility source separation using an iterative data fitting method. Neuroimage 274, 120148 (2023).
- Chen, J., Gong, N.-J., Chaim, K. T., Otaduy, M. C. G. & Liu, C. Decompose quantitative susceptibility mapping (QSM) to sub-voxel diamagnetic and paramagnetic components based on gradient-echo MRI data. Neuroimage 242, 118477 (2021).