Skip to content

Commit

Permalink
🐛
Browse files Browse the repository at this point in the history
  • Loading branch information
DataXujing committed Nov 21, 2019
1 parent b98f054 commit f0e4df0
Show file tree
Hide file tree
Showing 8 changed files with 95 additions and 79 deletions.
72 changes: 42 additions & 30 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

### 1. 📣 数据介绍

确定了业务场景之后,需要手机大量的数据(之前参加过一个安全帽识别检测的比赛,但是数据在比赛平台无法下载为己用),一般来说包含两大来源,一部分是网络数据,可以通过百度、Google图片爬虫拿到,另一部分是用户场景的视频录像,后一部分相对来说数据量更大,但出于商业因素几乎不会开放。本文开源的安全帽检测数据集([SafetyHelmetWearing-Dataset, SHWD](https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset))主要通过爬虫拿到,总共有7581张图像,包含9044个佩戴安全帽的bounding box(正类),以及111514个未佩戴安全帽的bounding box(负类),所有的图像用labelimg标注出目标区域及类别。其中每个bounding box的标签:hat”表示佩戴安全帽,“person”表示普通未佩戴的行人头部区域的bounding box。另外本数据集中person标签的数据大多数来源于[SCUT-HEAD](https://github.com/HCIILAB/SCUT-HEAD-Dataset-Release)数据集,用于判断是未佩戴安全帽的人。大致说一下数据集构造的过程:
确定了业务场景之后,需要收集大量的数据(之前参加过一个安全帽识别检测的比赛,但是数据在比赛平台无法下载为己用),一般来说包含两大来源,一部分是网络数据,可以通过百度、Google图片爬虫拿到,另一部分是用户场景的视频录像,后一部分相对来说数据量更大,但出于商业因素几乎不会开放。本文开源的安全帽检测数据集([SafetyHelmetWearing-Dataset, SHWD](https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset))主要通过爬虫拿到,总共有7581张图像,包含9044个佩戴安全帽的bounding box(正类),以及111514个未佩戴安全帽的bounding box(负类),所有的图像用labelimg标注出目标区域及类别。其中每个bounding box的标签:hat”表示佩戴安全帽,“person”表示普通未佩戴的行人头部区域的bounding box。另外本数据集中person标签的数据大多数来源于[SCUT-HEAD](https://github.com/HCIILAB/SCUT-HEAD-Dataset-Release)数据集,用于判断是未佩戴安全帽的人。大致说一下数据集构造的过程:

1.数据爬取

Expand Down Expand Up @@ -47,15 +47,15 @@ Packages:
- opencv-python
- tqdm

将预训练的darknet的权重下载,下载地址:<https://pjreddie.com/media/files/yolov3.weights>,并将该weight文件拷贝大`./data/darknet_weights/`下,因为这是darknet版本的预训练权重,需要转化为Tensorflow可用的版本,运行如下代码可以实现:
将预训练的darknet的权重下载,下载地址:<https://pjreddie.com/media/files/yolov3.weights>,并将该weight文件拷贝到`./data/darknet_weights/`下,因为这是darknet版本的预训练权重,需要转化为Tensorflow可用的版本,运行如下代码可以实现:

```shell
python convert_weight.py
```

这样转化后的Tensorflow checkpoint文件被存放在:`./data/darknet_weights/`目录。你也可以下载已经转化好的模型:

[Google云盘]((https://drive.google.com/drive/folders/1mXbNgNxyXPi7JNsnBaxEv1-nWr7SVoQt?usp=sharing) [GitHub Release](https://github.com/wizyoung/YOLOv3_TensorFlow/releases/)
[Google云盘](https://drive.google.com/drive/folders/1mXbNgNxyXPi7JNsnBaxEv1-nWr7SVoQt?usp=sharing) [GitHub Release](https://github.com/wizyoung/YOLOv3_TensorFlow/releases/)


### 3.🔰 训练数据构建
Expand All @@ -67,17 +67,19 @@ python convert_weight.py
```shell
python data_pro.py
```
分割训练集,验证集,测试集并在`./data/my_data/`下生成`train.txt/val.txt/test.txt`,对于一张图像对应一行数据,包括`image_index`,`image_absolute_path`,`box_1`,`box_2`,...,`box_n`,每个字段中间是用空格分隔的,其中:
分割训练集,验证集,测试集并在`./data/my_data/`下生成`train.txt/val.txt/test.txt`,对于一张图像对应一行数据,包括`image_index`,`image_absolute_path`, `img_width`, `img_height`,`box_1`,`box_2`,...,`box_n`,每个字段中间是用空格分隔的,其中:

+ `image_index`文本的行号
+ `image_absolute_path` 一定是绝对路径
+ `img_width`, `img_height`,`box_1`,`box_2`,...,`box_n`中涉及数值的取值一定取int型
+ `box_x`的形式为:`label_index, x_min,y_min,x_max,y_max`(注意坐标原点在图像的左上角)
+ `label_index`是label对应的index(取值为0-class_num-1),这里要注意YOLO系列的模型训练与SSD不同,label不包含background

例子:

```
0 xxx/xxx/a.jpg 0 453 369 473 391 1 588 245 608 268
1 xxx/xxx/b.jpg 1 466 403 485 422 2 793 300 809 320
0 xxx/xxx/a.jpg 1920,1080,0 453 369 473 391 1 588 245 608 268
1 xxx/xxx/b.jpg 1920,1080,1 466 403 485 422 2 793 300 809 320
...
```

Expand All @@ -98,6 +100,8 @@ person
python get_kmeans.py
```

![](docs/kmeans.png)

可以得到9个anchors和平均的IOU,把anchors保存在文本文件:`./data/yolo_anchors.txt`,

**注意: Kmeans计算出的YOLO Anchors是在在调整大小的图像比例的,默认的调整大小方法是保持图像的纵横比。**
Expand All @@ -112,20 +116,21 @@ python get_kmeans.py
<summary><mark><font color=darkred>修改arg.py</font></mark></summary>
<pre><code>
### Some paths
train_file = './data/my_data/train.txt' # The path of the training txt file.
val_file = './data/my_data/val.txt' # The path of the validation txt file.
train_file = './data/my_data/label/train.txt' # The path of the training txt file.
val_file = './data/my_data/label/val.txt' # The path of the validation txt file.
restore_path = './data/darknet_weights/yolov3.ckpt' # The path of the weights to restore.
save_dir = './checkpoint/' # The directory of the weights to save.
log_dir = './data/logs/' # The directory to store the tensorboard log files.
progress_log_path = './data/progress.log' # The path to record the training progress.
anchor_path = './data/yolo_anchors.txt' # The path of the anchor txt file.
class_name_path = './data/coco.names' # The path of the class names.
### Training releated numbers
batch_size = 2 # 需要调整为自己的类别数
batch_size = 32 #6
img_size = [416, 416] # Images will be resized to `img_size` and fed to the network, size format: [width, height]
total_epoches = 500 # 训练周期调整
train_evaluation_step = 50 # Evaluate on the training batch after some steps.
val_evaluation_epoch = 1 # Evaluate on the whole validation dataset after some steps. Set to None to evaluate every epoch.
letterbox_resize = True # Whether to use the letterbox resize, i.e., keep the original aspect ratio in the resized image.
total_epoches = 500
train_evaluation_step = 100 # Evaluate on the training batch after some steps.
val_evaluation_epoch = 50 # Evaluate on the whole validation dataset after some epochs. Set to None to evaluate every epoch.
save_epoch = 10 # Save the model after some epochs.
batch_norm_decay = 0.99 # decay in bn ops
weight_decay = 5e-4 # l2 weight decay
Expand All @@ -134,45 +139,52 @@ global_step = 0 # used when resuming training
num_threads = 10 # Number of threads for image processing used in tf.data pipeline.
prefetech_buffer = 5 # Prefetech_buffer used in tf.data pipeline.
### Learning rate and optimizer
optimizer_name = 'adam' # Chosen from [sgd, momentum, adam, rmsprop]
optimizer_name = 'momentum' # Chosen from [sgd, momentum, adam, rmsprop]
save_optimizer = True # Whether to save the optimizer parameters into the checkpoint file.
learning_rate_init = 1e-3
lr_type = 'exponential' # Chosen from [fixed, exponential, cosine_decay, cosine_decay_restart, piecewise]
learning_rate_init = 1e-4
lr_type = 'piecewise' # Chosen from [fixed, exponential, cosine_decay, cosine_decay_restart, piecewise]
lr_decay_epoch = 5 # Epochs after which learning rate decays. Int or float. Used when chosen `exponential` and `cosine_decay_restart` lr_type.
lr_decay_factor = 0.96 # The learning rate decay factor. Used when chosen `exponential` lr_type.
lr_lower_bound = 1e-6 # The minimum learning rate.
# piecewise params
pw_boundaries = [60, 80] # epoch based boundaries
pw_values = [learning_rate_init, 3e-5, 1e-4]
# only used in piecewise lr type
pw_boundaries = [30, 50] # epoch based boundaries
pw_values = [learning_rate_init, 3e-5, 1e-5]
### Load and finetune
# Choose the parts you want to restore the weights. List form.
# Set to None to restore the whole model.
restore_part = ['yolov3/darknet53_body']
# restore_include: None, restore_exclude: None => restore the whole model
# restore_include: None, restore_exclude: scope => restore the whole model except `scope`
# restore_include: scope1, restore_exclude: scope2 => if scope1 contains scope2, restore scope1 and not restore scope2 (scope1 - scope2)
# choise 1: only restore the darknet body
# restore_include = ['yolov3/darknet53_body']
# restore_exclude = None
# choise 2: restore all layers except the last 3 conv2d layers in 3 scale
restore_include = None
restore_exclude = ['yolov3/yolov3_head/Conv_14', 'yolov3/yolov3_head/Conv_6', 'yolov3/yolov3_head/Conv_22']
# Choose the parts you want to finetune. List form.
# Set to None to train the whole model.
update_part = ['yolov3/yolov3_head']
### other training strategies
multi_scale_train = False # Whether to apply multi-scale training strategy. Image size varies from [320, 320] to [640, 640] by default.
use_label_smooth = False # Whether to use class label smoothing strategy.
use_focal_loss = False # Whether to apply focal loss on the conf loss.
use_mix_up = False # Whether to use mix up data augmentation strategy. # 数据增强
multi_scale_train = True # Whether to apply multi-scale training strategy. Image size varies from [320, 320] to [640, 640] by default.
use_label_smooth = True # Whether to use class label smoothing strategy.
use_focal_loss = True # Whether to apply focal loss on the conf loss.
use_mix_up = True # Whether to use mix up data augmentation strategy.
use_warm_up = True # whether to use warm up strategy to prevent from gradient exploding.
warm_up_epoch = 3 # Warm up training epoches. Set to a larger value if gradient explodes.
### some constants in validation
# nms 非极大值抑制
nms_threshold = 0.5 # iou threshold in nms operation
score_threshold = 0.5 # threshold of the probability of the classes in nms operation
nms_topk = 50 # keep at most nms_topk outputs after nms
# nms
nms_threshold = 0.45 # iou threshold in nms operation
score_threshold = 0.01 # threshold of the probability of the classes in nms operation, i.e. score = pred_confs * pred_probs. set lower for higher recall.
nms_topk = 150 # keep at most nms_topk outputs after nms
# mAP eval
eval_threshold = 0.5 # the iou threshold applied in mAP evaluation
use_voc_07_metric = False # whether to use voc 2007 evaluation metric, i.e. the 11-point metric
### parse some params
anchors = parse_anchors(anchor_path)
classes = read_class_names(class_name_path)
class_num = len(classes)
train_img_cnt = len(open(train_file, 'r').readlines())
val_img_cnt = len(open(val_file, 'r').readlines())
train_batch_num = int(math.ceil(float(train_img_cnt) / batch_size)) # iteration

train_batch_num = int(math.ceil(float(train_img_cnt) / batch_size))
lr_decay_freq = int(train_batch_num * lr_decay_epoch)
pw_boundaries = [float(i) * train_batch_num + global_step for i in pw_boundaries]
</code></pre>
Expand Down
4 changes: 2 additions & 2 deletions args.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,8 @@
import math

### Some paths
train_file = './data/my_data/train.txt' # The path of the training txt file.
val_file = './data/my_data/val.txt' # The path of the validation txt file.
train_file = './data/my_data/label/train.txt' # The path of the training txt file.
val_file = './data/my_data/label/val.txt' # The path of the validation txt file.
restore_path = './data/darknet_weights/yolov3.ckpt' # The path of the weights to restore.
save_dir = './checkpoint/' # The directory of the weights to save.
log_dir = './data/logs/' # The directory to store the tensorboard log files.
Expand Down
3 changes: 2 additions & 1 deletion data/coco.names
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
biopsy forceps
hat
person
2 changes: 1 addition & 1 deletion data/yolo_anchors.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
676,197, 763,250, 684,283, 868,231, 745,273, 544,391, 829,258, 678,316, 713,355
5,5, 6,7, 7,9, 10,11, 13,15, 19,21, 27,31, 43,50, 79,93
86 changes: 44 additions & 42 deletions data_pro.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,12 +33,12 @@ def __init__(self,data_path):

def load_labels(self, model):
if model == 'train':
txtname = os.path.join(self.data_path, 'train_img.txt')
txtname = os.path.join(self.data_path, 'ImageSets/Main/train.txt')
if model == 'test':
txtname = os.path.join(self.data_path, 'test_img.txt')
txtname = os.path.join(self.data_path, 'ImageSets/Main/test.txt')

if model == "val":
txtname = os.path.join(self.data_path, 'val_img.txt')
txtname = os.path.join(self.data_path, 'ImageSets/Main/val.txt')


with open(txtname, 'r') as f:
Expand All @@ -47,23 +47,23 @@ def load_labels(self, model):

my_index = 0
for ind in image_ind:
class_inds, x1s, y1s, x2s, y2s = self.load_data(ind)
class_inds, x1s, y1s, x2s, y2s,img_width,img_height = self.load_data(ind)

if len(class_inds) == 0:
pass
else:
annotation_label = ""
#box_x: label_index, x_min,y_min,x_max,y_max
for label_i in range(len(clas_inds)):
for label_i in range(len(class_inds)):

annotation_label += " " + str(class_inds[label_i])
annotation_label += " " + str(x1s[label_i])
annotation_label += " " + str(y1s[label_i])
annotation_label += " " + str(x2s[label_i])
annotation_label += " " + str(y2s[label_i])

with open(model+".txt","a") as f:
f.write(str(my_index) + " " + data_path+"/ImageSets/"+ind+".jpg" + annotation_label + "\n")
with open("./data/my_data/label/"+model+".txt","a") as f:
f.write(str(my_index) + " " + data_path+"/JPEGImages/"+ind+".jpg"+" "+str(img_width) +" "+str(img_height)+ annotation_label + "\n")

my_index += 1

Expand All @@ -76,8 +76,8 @@ def load_data(self, index):
filename = os.path.join(self.data_path, 'Annotations', index + '.xml')
tree = ET.parse(filename)
image_size = tree.find('size')
# image_width = float(image_size.find('width').text)
# image_height = float(image_size.find('height').text)
image_width = int(float(image_size.find('width').text))
image_height = int(float(image_size.find('height').text))
# h_ratio = 1.0 * self.image_size / image_height
# w_ratio = 1.0 * self.image_size / image_width

Expand All @@ -91,37 +91,38 @@ def load_data(self, index):

for obj in objects:
box = obj.find('bndbox')
x1 = float(box.find('xmin').text)
y1 = float(box.find('ymin').text)
x2 = float(box.find('xmax').text)
y2 = float(box.find('ymax').text)
x1 = int(float(box.find('xmin').text))
y1 = int(float(box.find('ymin').text))
x2 = int(float(box.find('xmax').text))
y2 = int(float(box.find('ymax').text))
# x1 = max(min((float(box.find('xmin').text)) * w_ratio, self.image_size), 0)
# y1 = max(min((float(box.find('ymin').text)) * h_ratio, self.image_size), 0)
# x2 = max(min((float(box.find('xmax').text)) * w_ratio, self.image_size), 0)
# y2 = max(min((float(box.find('ymax').text)) * h_ratio, self.image_size), 0)
class_ind = self.class_to_ind[obj.find('name').text]
# class_ind = self.class_to_ind[obj.find('name').text.lower().strip()]

# boxes = [0.5 * (x1 + x2) / self.image_size, 0.5 * (y1 + y2) / self.image_size, np.sqrt((x2 - x1) / self.image_size), np.sqrt((y2 - y1) / self.image_size)]
# cx = 1.0 * boxes[0] * self.cell_size
# cy = 1.0 * boxes[1] * self.cell_size
# xind = int(np.floor(cx))
# yind = int(np.floor(cy))

# label[yind, xind, :, 0] = 1
# label[yind, xind, :, 1:5] = boxes
# label[yind, xind, :, 5 + class_ind] = 1

if x1 >= x2 or y1 >= y2:
pass
else:
class_inds.append(class_ind)
x1s.append(x1)
y1s.append(y1)
x2s.append(x2)
y2s.append(y2)

return class_inds, x1s, y1s, x2s, y2s
if obj.find('name').text in self.classes:
class_ind = self.class_to_ind[obj.find('name').text]
# class_ind = self.class_to_ind[obj.find('name').text.lower().strip()]

# boxes = [0.5 * (x1 + x2) / self.image_size, 0.5 * (y1 + y2) / self.image_size, np.sqrt((x2 - x1) / self.image_size), np.sqrt((y2 - y1) / self.image_size)]
# cx = 1.0 * boxes[0] * self.cell_size
# cy = 1.0 * boxes[1] * self.cell_size
# xind = int(np.floor(cx))
# yind = int(np.floor(cy))

# label[yind, xind, :, 0] = 1
# label[yind, xind, :, 1:5] = boxes
# label[yind, xind, :, 5 + class_ind] = 1

if x1 >= x2 or y1 >= y2:
pass
else:
class_inds.append(class_ind)
x1s.append(x1)
y1s.append(y1)
x2s.append(x2)
y2s.append(y2)

return class_inds, x1s, y1s, x2s, y2s, image_width, image_height


def data_split(img_path):
Expand All @@ -141,19 +142,19 @@ def data_split(img_path):
for file in files:
if file in val_part:

with open("./data/my_data/val_img.txt","a") as val_f:
with open("./data/my_data/ImageSets/Main/val.txt","a") as val_f:
val_f.write(file[:-4] + "\n" )

val_index += 1

elif file in test_part:
with open("./data/my_data/test_img.txt","a") as test_f:
with open("./data/my_data/ImageSets/Main/test.txt","a") as test_f:
test_f.write(file[:-4] + "\n")

test_index += 1

else:
with open("./data/my_data/train_img.txt","a") as train_f:
with open("./data/my_data/ImageSets/Main/train.txt","a") as train_f:
train_f.write(file[:-4] + "\n")

train_index += 1
Expand All @@ -166,12 +167,13 @@ def data_split(img_path):
if __name__ == "__main__":

# 分割train, val, test
img_path = "./data/my_data/ImageSets"
data_split(img_path)
# img_path = "./data/my_data/ImageSets"
# data_split(img_path)
print("===========split data finish============")

# 做YOLO V3需要的训练集
data_path = "./data/my_data" # 尽量用绝对路径
base_path = os.getcwd()
data_path = os.path.join(base_path,"data/my_data") # 绝对路径

data_p = Data_preprocess(data_path)
data_p.load_labels("train")
Expand Down
Binary file added docs/kmeans.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
6 changes: 3 additions & 3 deletions get_kmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,8 +98,8 @@ def parse_anno(annotation_path, target_size=None):
result = []
for line in anno:
s = line.strip().split(' ')
img_w = int(s[2])
img_h = int(s[3])
img_w = int(float(s[2]))
img_h = int(float(s[3]))
s = s[4:]
box_cnt = len(s) // 5
for i in range(box_cnt):
Expand Down Expand Up @@ -139,7 +139,7 @@ def get_kmeans(anno, cluster_num=9):
# if target_resize is speficied, the anchors are on the resized image scale
# if target_resize is set to None, the anchors are on the original image scale
target_size = [416, 416]
annotation_path = "./data/my_data/train.txt"
annotation_path = "./data/my_data/label/train.txt"
anno_result = parse_anno(annotation_path, target_size=target_size)
anchors, ave_iou = get_kmeans(anno_result, 9)

Expand Down
Loading

0 comments on commit f0e4df0

Please sign in to comment.