-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_SSL.py
254 lines (206 loc) · 10.6 KB
/
model_SSL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
import torchmetrics
import pytorch_lightning as pl
from torchvision import models
import psutil
import os
import heapq
import pickle
from torch.utils.data import DataLoader
from utils.augmentations import load_augmentations, normalization
from utils.utils import cosine_scheduler, weight_decay_filter, load_model, LARS
from utils.loss import loss_function
from utils.load_data import HDF5Dataset, HDF5Dataset_Labels, MergedDataset
from sklearn.cluster import KMeans
import numpy as np
import random
#torch.set_float32_matmul_precision('medium')
class ProjectionHead(nn.Module):
def __init__(self, input_dim=512, hidden_dim=2048, output_dim=2048):
super(ProjectionHead, self).__init__()
self.layers = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(inplace=True),
nn.Linear(hidden_dim, output_dim),
)
def forward(self, x):
return self.layers(x)
class LitModelSSL(pl.LightningModule):
def __init__(self, hyperparameters):
super().__init__()
self.hyperparameters = hyperparameters
self.learning_rate = hyperparameters['learning_rate']
self.accuracy = torchmetrics.Accuracy(task='binary')
self.ssl_phase = True # Default phase
self.cosine_decay_lr_momentum = hyperparameters["cosine_decay_lr_momentum"]
self.LARS = hyperparameters["LARS"]
self.prediction_differences = []
self.min_lr = self.hyperparameters['min_lr']
self.epochs = self.hyperparameters['num_epochs']
self.warmup_epochs = self.hyperparameters['warmup_epochs']
self.data_loader_len= self.hyperparameters['data_loader_len']
self.batch_size = hyperparameters["batch_size"]
self.momentum_start = self.hyperparameters['momentum_start']
self.weight_decay = self.hyperparameters['weight_decay']
self.accumulation_steps = self.hyperparameters['accumulation_steps']
# Base encoder
self.encoder = load_model(self.hyperparameters['model'], self.hyperparameters['num_classes'], self.hyperparameters["pretrained"])
self.encoder.fc = nn.Identity() # Remove the final fully connected layer
self.classifier = nn.Linear(in_features=512, out_features=1)
self.validation_step_outputs = []
# Projection head
self.projection_head = ProjectionHead(input_dim=512) # ResNet18 outputs 512 features
self.loss = loss_function(self.hyperparameters['loss'])(lambd=hyperparameters['lambda'])
def forward(self, x1, x2=None):
# Pass both inputs through the encoder and the projection head
if x2 is not None:
d1 = self.encoder(x1)
d2 = self.encoder(x2)
z1 = self.projection_head(d1)
z2 = self.projection_head(d2)
return z1, z2, (d1, d2)
else:
return self.projection_head(self.encoder(x1)), self.encoder(x1)
def switch_to_classifier(self):
self.ssl_phase = False
self.loss = loss_function(self.hyperparameters['loss'], self.ssl_phase)
# Freeze the parameters of base network and projector
for param in self.base_network.parameters():
param.requires_grad = False
for param in self.projector.parameters():
param.requires_grad = False
for param in self.linear_classifier.parameters():
param.requires_grad = True
def training_step(self, batch, batch_idx):
if self.ssl_phase:
x1, x2, _ = batch # Assuming your dataloader returns a tuple of (view1, view2)
z1, z2, _ = self.forward(x1, x2)
loss = self.loss(z1, z2) / self.accumulation_steps
self.log('train_loss', loss)
else:
x, y = batch
_, d = self.forward(x)
y_hat = self.classifier(d)
loss = self.loss(y_hat.squeeze(), y.squeeze().float()) / self.accumulation_steps
# Log training loss
preds = (torch.sigmoid(y_hat) > 0.5).detach()
self.log('linear_acc', self.accuracy(preds.squeeze(), y.squeeze().int()).detach())
self.log('linea_loss', loss)
return loss
def test_step(self, batch, batch_idx):
if not self.ssl_phase:
x, y, _ = batch
_, d = self.forward(x)
y_hat = self.classifier(d)
loss = self.loss(y_hat.squeeze(), y.squeeze().float())
# Compute and log test accuracy
preds = torch.sigmoid(y_hat) > 0.5
self.log('test_loss', loss, on_epoch=True, prog_bar=True)
self.log('test_acc', self.accuracy(preds.squeeze(), y.squeeze().int()), on_epoch=True, prog_bar=True)
probs = torch.sigmoid(y_hat).squeeze()
# Store prediction differences and corresponding data
prediction_differences = torch.abs(probs.squeeze() - y.squeeze().float()).detach().cpu().numpy()
self.memory = psutil.virtual_memory().percent
for i in range(len(prediction_differences)):
# Ensure that prediction_differences[i] is a scalar
difference = prediction_differences[i].item()
heapq.heappush(self.prediction_differences, (difference, (batch_idx, i), x[i].clone(), y[i].cpu()))
# Keep only top 5
if len(self.prediction_differences) > 5:
heapq.heappop(self.prediction_differences)
else:
pass
def on_test_epoch_end(self):
if not self.ssl_phase:
optimizer_name = 'LARS' if self.LARS else 'AdamW'
sub_dir_name = f"Loss_{self.loss}_Opt_{optimizer_name}_Batch_{self.batch_size}"
sub_dir_path = os.path.join('./LRP/', sub_dir_name)
os.makedirs(sub_dir_path, exist_ok=True)
save_path = os.path.join(sub_dir_path, 'prediction_differences.pkl')
with open(save_path, 'wb') as f:
pickle.dump(self.prediction_differences, f)
else:
pass
def validation_step(self, batch, batch_idx):
if self.ssl_phase:
x, y = batch # Assuming your dataloader returns a tuple of (view1, view2)
_, z = self.forward(x)
self.validation_step_outputs.append({'features': z, 'labels': y})
else:
pass
def on_validation_epoch_end(self):
if self.ssl_phase:
all_features = torch.cat([o['features'] for o in self.validation_step_outputs], dim=0)
all_labels = torch.cat([o['labels'] for o in self.validation_step_outputs], dim=0)
# Train K-means on the features
kmeans = KMeans(n_clusters=2, random_state=42).fit(all_features.cpu().numpy())
# Apply K-means clustering
preds = torch.tensor(kmeans.labels_, dtype=torch.int32, device=all_labels.device)
self.log('test_acc', self.accuracy(preds.squeeze(), all_labels.squeeze()), on_epoch=True, prog_bar=True)
self.validation_step_outputs.clear()
else:
pass
def configure_optimizers(self):
if self.LARS:
combined_params = list(self.encoder.parameters()) + list(self.projection_head.parameters())
optimizer = LARS(combined_params, lr=self.learning_rate, weight_decay=self.weight_decay, momentum=0.9, eta=0.001, weight_decay_filter=weight_decay_filter)
else:
optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.learning_rate)
if self.cosine_decay_lr_momentum:
# Assuming cosine_scheduler returns a PyTorch Learning Rate Scheduler
lr_scheduler = cosine_scheduler(
self.learning_rate,
self.min_lr,
self.epochs, self.data_loader_len,
warmup_epochs=self.warmup_epochs
)
momentum_scheduler = cosine_scheduler(
self.momentum_start,
1,
self.epochs, self.data_loader_len
)
lr_scheduler_config = {
'scheduler': lr_scheduler,
'interval': 'step',
'name': 'lr_scheduler',
}
momentum_scheduler_config = {
'scheduler': momentum_scheduler,
'interval': 'step',
'name': 'momentum_scheduler',
}
return {"optimizer": optimizer, "lr_schedulers": [lr_scheduler_config, momentum_scheduler_config]}
return optimizer
class LitDataModuleSSL(pl.LightningDataModule):
def __init__(self, hyperparameters):
super().__init__()
augmentation_mapping = load_augmentations()
if hyperparameters["augmentation"][0] in augmentation_mapping:
augmentation1 = augmentation_mapping[hyperparameters["augmentation"][0]]
if hyperparameters["augmentation"][1] in augmentation_mapping:
augmentation2 = augmentation_mapping[hyperparameters["augmentation"][1]]
self.batch_size = hyperparameters['batch_size']
self.dataset = hyperparameters['dataset']
self.transform1 = augmentation1
self.transform2 = augmentation2
def setup(self, stage=None):
# Split data and set up for train, val, test
#if self.dataset is 'pcam':
x1 = HDF5Dataset('./data/pcam/camelyonpatch_level_2_split_train_x.h5-002', 'x', self.transform1)
x2 = HDF5Dataset('./data/pcam/camelyonpatch_level_2_split_train_x.h5-002', 'x', self.transform2)
y = HDF5Dataset_Labels('./data/pcam/camelyonpatch_level_2_split_train_y.h5', 'y')
self.C16_train = MergedDataset((x1, x2),y)
x = HDF5Dataset('./data/pcam/camelyonpatch_level_2_split_valid_x.h5', 'x', normalization(), train=False)
y = HDF5Dataset_Labels('./data/pcam/camelyonpatch_level_2_split_valid_y.h5', 'y')
self.C16_val = MergedDataset(x,y)
x = HDF5Dataset('./data/pcam/camelyonpatch_level_2_split_test_x.h5', 'x', normalization(), train=False)
y = HDF5Dataset_Labels('./data/pcam/camelyonpatch_level_2_split_test_y.h5', 'y')
self.C16_test = MergedDataset(x,y,is_test=True)
def train_dataloader(self):
return DataLoader(self.C16_train, batch_size=self.batch_size, shuffle=True, num_workers=4, persistent_workers=True)
def val_dataloader(self):
return DataLoader(self.C16_val, batch_size=self.batch_size, shuffle=False, num_workers=4,persistent_workers=True)
def test_dataloader(self):
return DataLoader(self.C16_test, batch_size=self.batch_size, shuffle=False, num_workers=7)