Skip to content

David-Drexlin/DataAugmentation

Repository files navigation

Run the Experiments

  1. pip install -r requirements.txt 1.5 Adjust hyper.yaml
  2. python3 train.py train.py -> Controls Pytorch Lighnting General Training model.py -> Supervised Model Logic, in Pytorch Lighnting

utils/yaml/XX.yaml configurations utils/utils e.g. loading model, yaml etc. utils/loss e.g. loss loaders utils/augmentations augmentations used

(3.) With a .ckpt model the model can be tested via python3 train.py --mode test

Models Available:

  • "resnet18"
  • "resnet34"
  • "resnet50"
  • "vit_small_patch16_224"

Augmentations Available (Code inside ./utils/augmentations.py):

  • "no_augmentations"
  • "normalization"
  • "GeometricAugmentation"
  • "ColorAugmentation"
  • "ColorAugmentationsChannel"

Losses Available:

  • "binary_cross_entropy_with_logits"
  • "binary_cross_entropy"
  • "cross_entropy"

Changed Torchmetrics.BinaryAccuarcy _safedivide to cpu!!

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published