-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: adapt to InternTrain and InternEvo respectively (#121)
Adapt to InternTrain and InternEvo respectively.
- Loading branch information
Showing
26 changed files
with
5,170 additions
and
2,455 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,170 +1,6 @@ | ||
# Copyright (c) 2024, DeepLink. | ||
|
||
import torch | ||
from torch.optim.optimizer import Optimizer | ||
from typing import List | ||
import deeplink_ext.cpp_extensions as ext | ||
from deeplink_ext.interntrain_ops.adamw import AdamW | ||
|
||
|
||
assert hasattr(ext, "adamw") | ||
|
||
__all__ = ["AdamW"] | ||
|
||
|
||
def fused_adamw( | ||
params: List[torch.Tensor], | ||
grads: List[torch.Tensor], | ||
exp_avgs: List[torch.Tensor], | ||
exp_avg_sqs: List[torch.Tensor], | ||
max_exp_avg_sqs: List[torch.Tensor], | ||
step: int, | ||
*, | ||
amsgrad: bool, | ||
beta1: float, | ||
beta2: float, | ||
lr: float, | ||
weight_decay: float, | ||
eps: float, | ||
maximize: bool, | ||
): | ||
r"""Functional API that performs AdamW algorithm computation. | ||
See :class:`~torch.optim.AdamW` for details. | ||
""" | ||
if maximize is True: | ||
raise RuntimeError( | ||
"Deeplink Adamw with fused=True does not support maximize=True!" | ||
) | ||
|
||
for i, param in enumerate(params): | ||
grad = grads[i] | ||
exp_avg = exp_avgs[i] | ||
exp_avg_sq = exp_avg_sqs[i] | ||
if amsgrad and len(max_exp_avg_sqs): | ||
max_exp_avg_sq = max_exp_avg_sqs[i] | ||
else: | ||
max_exp_avg_sq = None | ||
|
||
ext.adamw( | ||
param, | ||
exp_avg, | ||
exp_avg_sq, | ||
max_exp_avg_sq, | ||
grad, | ||
lr, | ||
beta1, | ||
beta2, | ||
eps, | ||
weight_decay, | ||
step, | ||
amsgrad, | ||
) | ||
|
||
|
||
class AdamW(Optimizer): | ||
def __init__( | ||
self, | ||
params, | ||
lr=1e-3, | ||
betas=(0.9, 0.999), | ||
eps=1e-8, | ||
weight_decay=1e-2, | ||
amsgrad=False, | ||
*, | ||
maximize: bool = False, | ||
): | ||
if not 0.0 <= lr: | ||
raise ValueError("Invalid learning rate: {}".format(lr)) | ||
if not 0.0 <= eps: | ||
raise ValueError("Invalid epsilon value: {}".format(eps)) | ||
if not 0.0 <= betas[0] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | ||
if not 0.0 <= betas[1] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | ||
if not 0.0 <= weight_decay: | ||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | ||
defaults = dict( | ||
lr=lr, | ||
betas=betas, | ||
eps=eps, | ||
weight_decay=weight_decay, | ||
amsgrad=amsgrad, | ||
maximize=maximize, | ||
) | ||
super(AdamW, self).__init__(params, defaults) | ||
|
||
def __setstate__(self, state): | ||
super(AdamW, self).__setstate__(state) | ||
for group in self.param_groups: | ||
group.setdefault("amsgrad", False) | ||
group.setdefault("maximize", False) | ||
|
||
@torch.no_grad() | ||
def step(self, closure=None): | ||
loss = None | ||
if closure is not None: | ||
with torch.enable_grad(): | ||
loss = closure() | ||
|
||
for group in self.param_groups: | ||
params_with_grad = [] | ||
grads = [] | ||
exp_avgs = [] | ||
exp_avg_sqs = [] | ||
max_exp_avg_sqs = [] | ||
amsgrad = group["amsgrad"] | ||
beta1, beta2 = group["betas"] | ||
|
||
if "step" in group: | ||
group["step"] += 1 | ||
else: | ||
group["step"] = 1 | ||
|
||
for p in group["params"]: | ||
if p.grad is None: | ||
continue | ||
params_with_grad.append(p) | ||
if p.grad.is_sparse: | ||
raise RuntimeError("AdamW does not support sparse gradients") | ||
grads.append(p.grad) | ||
|
||
state = self.state[p] | ||
|
||
# State initialization | ||
if len(state) == 0: | ||
# Exponential moving average of gradient values | ||
state["exp_avg"] = torch.zeros_like( | ||
p, memory_format=torch.preserve_format | ||
) | ||
# Exponential moving average of squared gradient values | ||
state["exp_avg_sq"] = torch.zeros_like( | ||
p, memory_format=torch.preserve_format | ||
) | ||
if amsgrad: | ||
# Maintains max of all exp. moving avg. of sq. grad. values | ||
state["max_exp_avg_sq"] = torch.zeros_like( | ||
p, memory_format=torch.preserve_format | ||
) | ||
|
||
exp_avgs.append(state["exp_avg"]) | ||
exp_avg_sqs.append(state["exp_avg_sq"]) | ||
|
||
if amsgrad: | ||
max_exp_avg_sqs.append(state["max_exp_avg_sq"]) | ||
|
||
fused_adamw( | ||
params_with_grad, | ||
grads, | ||
exp_avgs, | ||
exp_avg_sqs, | ||
max_exp_avg_sqs, | ||
group["step"], | ||
amsgrad=amsgrad, | ||
beta1=beta1, | ||
beta2=beta2, | ||
lr=group["lr"], | ||
weight_decay=group["weight_decay"], | ||
eps=group["eps"], | ||
maximize=group["maximize"], | ||
) | ||
|
||
return loss |
Oops, something went wrong.