-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a40b24e
commit a38923b
Showing
1 changed file
with
110 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
import unittest | ||
import itertools | ||
|
||
from absl.testing import parameterized | ||
# from grouped_gemm import ops | ||
from deeplink_ext.internevo_ops import GroupedGemm | ||
import numpy as np | ||
import torch | ||
|
||
|
||
def allclose(x, y, pct=2.0): | ||
mask = torch.isclose(x, y, rtol=1e-5) | ||
pct_diff = (mask.numel() - mask.sum()) / mask.numel() * 100 | ||
if pct_diff > pct: | ||
print(x[torch.logical_not(mask)], y[torch.logical_not(mask)]) | ||
print("{:.2f}% of values not close.".format(pct_diff)) | ||
return False | ||
return True | ||
|
||
|
||
def add_transpose_flags(x): | ||
out = [] | ||
for y in x: | ||
for f in [(False,), (True,)]: | ||
out.append(y + f) | ||
return out | ||
|
||
|
||
_TEST_PROBLEMS = add_transpose_flags(( | ||
(1, 128, 128, 128), | ||
(8, 128, 128, 128), | ||
(16, 128, 128, 128), | ||
(1, 128, 256, 512), | ||
(8, 128, 256, 512), | ||
(16, 128, 256, 512), | ||
)) | ||
|
||
|
||
def randn(bs, x, y): | ||
out = (torch.rand(bs, x, y) - 0.5 * 2) / (y * x) | ||
return out.cuda().to(torch.bfloat16) | ||
|
||
|
||
def gmm(a, b, batch_sizes, trans_b=False): | ||
batch_sizes = batch_sizes.numpy() | ||
|
||
out = [] | ||
start = 0 | ||
for i, size in enumerate(batch_sizes): | ||
rhs = b[i, :, :].t() if trans_b else b[i, :, :] | ||
out.append(a[start:start + size, :] @ rhs) | ||
start += size | ||
return torch.cat(out) | ||
|
||
|
||
@parameterized.parameters(*_TEST_PROBLEMS) | ||
class OpsTest(parameterized.TestCase): | ||
|
||
def testGroupedGemm_FixedSizes(self, z, m, k, n, trans_b): | ||
torch.manual_seed(0) | ||
a = randn(z, m, k).view(-1, k) | ||
b = randn(z, n, k) if trans_b else randn(z, k, n) | ||
batch_sizes = torch.tensor([m] * z) | ||
|
||
a.requires_grad_(True) | ||
b.requires_grad_(True) | ||
a_ref = a.detach().clone().requires_grad_(True) | ||
b_ref = b.detach().clone().requires_grad_(True) | ||
|
||
out = GroupedGemm(a, b, batch_sizes, False, trans_b) | ||
expected_out = gmm(a_ref, b_ref, batch_sizes, trans_b) | ||
self.assertTrue(allclose(out.cpu(), expected_out.cpu())) | ||
|
||
# Check gradients. | ||
out.sum().backward() | ||
expected_out.sum().backward() | ||
self.assertTrue(allclose(a.grad.cpu(), a_ref.grad.cpu())) | ||
self.assertTrue(allclose(b.grad.cpu(), b_ref.grad.cpu())) | ||
|
||
def testGroupedGemm_VariableSizes(self, z, m, k, n, trans_b): | ||
torch.manual_seed(0) | ||
a = randn(z, m, k).view(-1, k) | ||
b = randn(z, n, k) if trans_b else randn(z, k, n) | ||
|
||
dist = torch.rand(z, ) | ||
dist /= dist.sum() | ||
batch_sizes = (dist * m).to(torch.long) | ||
error = m * z - batch_sizes.sum() | ||
batch_sizes[-1] += error | ||
assert batch_sizes.sum() == (m * z) | ||
|
||
a.requires_grad_(True) | ||
b.requires_grad_(True) | ||
a_ref = a.detach().clone().requires_grad_(True) | ||
b_ref = b.detach().clone().requires_grad_(True) | ||
|
||
out = GroupedGemm(a, b, batch_sizes, False, trans_b) | ||
expected_out = gmm(a_ref, b_ref, batch_sizes, trans_b) | ||
self.assertTrue(allclose(out.cpu(), expected_out.cpu())) | ||
|
||
# Check gradients. | ||
out.sum().backward() | ||
expected_out.sum().backward() | ||
self.assertTrue(allclose(a.grad.cpu(), a_ref.grad.cpu())) | ||
self.assertTrue(allclose(b.grad.cpu(), b_ref.grad.cpu())) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |