Skip to content

Methods for data segmentation under a sparse regression model

License

Notifications You must be signed in to change notification settings

Dom-Owens-UoB/moseg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ea02a93 · Jan 23, 2024

History

20 Commits
Jun 23, 2022
Jan 23, 2024
Jun 21, 2022
Jun 15, 2023
Jun 23, 2022
Jun 21, 2022
Jun 23, 2022
Jun 21, 2022
Aug 26, 2022
Jul 27, 2022
Mar 31, 2023
Jun 23, 2022
Jun 15, 2023
Sep 20, 2022

Repository files navigation

moseg

Methods for data segmentation under a sparse regression model. See

High-dimensional data segmentation in regression settings permitting heavy tails and temporal dependence, Haeran Cho and Dom Owens, arxiv.org/abs/2209.08892

Installation

package moseg installable via

devtools::install_github("https://github.com/Dom-Owens-UoB/moseg")

Usage

We can simulate from a piecewise sparse regression model via

set.seed(111)
dat <- moseg.sim(500, 50, q = 2, kappa = 4)

Identify change points:

out <- moseg(dat$X, dat$y, 100, do.scale = FALSE)

Multiscale:

out <- moseg.ms(dat$X, dat$y, c(50,100,150), do.scale = FALSE)

Using cross-validation:

cv <- moseg.cv(dat$X, dat$y, 50, do.scale = FALSE)
cv.ms <- moseg.ms.cv(dat$X, dat$y, c(50,100,150), do.scale = FALSE)

Releases

No releases published

Packages

No packages published

Languages