Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix conference name #22

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
- [Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting (NIPS2015)](https://arxiv.org/pdf/1506.04214.pdf)
> 利用雷达降雨量预测,不同雷达之间有空间联系,同一个雷达的序列数据存在时间联系,用传统CNN刻画雷达间的联系,用LSTM刻画时间联系,把LSTM中参数和输入数据的矩阵乘法替换成卷积,使得同时建模空间和时间约束,虽然输入数据依旧是标准张量,但是把时间空间结合起来。

- [Structured Sequence Modeling with Graph Convolutional Recurrent Networks (ICLR 2017 reject)](https://arxiv.org/pdf/1612.07659.pdf)
- [Structured Sequence Modeling with Graph Convolutional Recurrent Networks (ICONIP 2017)](https://arxiv.org/pdf/1612.07659.pdf)
> 把时间数据和空间数据结合起来,方法有输入数据做完图卷积然后再输入LSTM,或者把LSTM中的矩阵乘法替换成图卷积。

- [Convolutional Networks on Graphs for Learning Molecular Fingerprints (NIPS2015)](https://arxiv.org/pdf/1509.09292.pdf)
Expand Down Expand Up @@ -93,7 +93,7 @@
- [Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting (IJCAI 2018)](https://arxiv.org/pdf/1709.04875.pdf)
> STGCN,分别采用 ChebyNet 和 GCN 两种方式,将图卷积网络应用在交通流短时预测上,图卷积做空间关系建模,一维卷积做时间关系建模,交替迭代地组成时空卷积块,堆叠两个块构成模型,最终在 PEMS 和北京市两个数据集上进行实验验证,12个点预测12个点。

- [Multistep Speed Prediction on Traffic Networks: A Graph Convolutional Sequence-to-Sequence Learning Approach with Attention Mechanism(TRC 2018)](https://arxiv.org/ftp/arxiv/papers/1810/1810.10237.pdf)
- [Multistep Speed Prediction on Traffic Networks: A Graph Convolutional Sequence-to-Sequence Learning Approach with Attention Mechanism(TRC 2019)](https://arxiv.org/ftp/arxiv/papers/1810/1810.10237.pdf)
> 清华大学和高德地图合作的一项研究。作者采用了 GCN + Seq2Seq + Attention 的混合模型,将路网中的边构建成图中的结点,在 GCN 上做了改进,将邻接矩阵扩展到 k 阶并与一个权重矩阵相乘,类似 HA-GCN(2016),实现了邻居信息聚合时权重的自由调整,可以处理有向图。时间关系上使用 Seq2Seq + Attention 建模,完成了北京市二环线的多步的车速预测,对比的方法中没有近几年出现的时空预测模型。

- [Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting (AAAI 2019)](https://github.com/Davidham3/ASTGCN)
Expand Down