Skip to content
/ eznlp Public
forked from syuoni/eznlp

Easy Natural Language Processing

License

Notifications You must be signed in to change notification settings

Emvista/eznlp

 
 

Repository files navigation

Easy Natural Language Processing

Overparameterized neural networks are lazy (Chizat et al., 2019), so we design structures and objectives that can be easily optimized.

eznlp is a PyTorch-based package for neural natural language processing, currently supporting the following tasks:

This repository also maintains the code of our papers:

  • Check this link for "Deep Span Representations for Named Entity Recognition" accepted to Findings of ACL 2023.
  • Check this link for "Boundary Smoothing for Named Entity Recognition" in ACL 2022.
  • Check the annotation scheme and HwaMei-500 dataset described in "A Unified Framework of Medical Information Annotation and Extraction for Chinese Clinical Text" on Artificial Intelligence in Medicine.

Installation

Create an environment

$ conda create --name eznlp python=3.8
$ conda activate eznlp

Install dependencies

$ conda install numpy=1.18.5 pandas=1.0.5 xlrd=1.2.0 matplotlib=3.2.2 
$ conda install pytorch=1.7.1 torchvision=0.8.2 torchtext=0.8.1 {cpuonly|cudatoolkit=10.2|cudatoolkit=11.0} -c pytorch 
$ pip install -r requirements.txt 

Install eznlp

  • From source (recommended)
$ python setup.py sdist
$ pip install dist/eznlp-<version>.tar.gz --no-deps
  • With pip
$ pip install eznlp --no-deps

Running the Code

Text classification

$ python scripts/text_classification.py --dataset <dataset> [options]

Entity recognition

$ python scripts/entity_recognition.py --dataset <dataset> [options]

Relation extraction

$ python scripts/relation_extraction.py --dataset <dataset> [options]

Attribute extraction

$ python scripts/attribute_extraction.py --dataset <dataset> [options]

Citation

If you find our code useful, please cite the following papers:

@inproceedings{zhu2023deep,
  title={Deep Span Representations for Named Entity Recognition},
  author={Zhu, Enwei and Liu, Yiyang and Li, Jinpeng},
  booktitle={Findings of the Association for Computational Linguistics: ACL 2023},
  month={jul},
  year={2023},
  address={Toronto, Canada},
  publisher={Association for Computational Linguistics},
  url={https://aclanthology.org/2023.findings-acl.672},
  doi={10.18653/v1/2023.findings-acl.672},
  pages={10565--10582}
}
@inproceedings{zhu2022boundary,
  title={Boundary Smoothing for Named Entity Recognition},
  author={Zhu, Enwei and Li, Jinpeng},
  booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  month={may},
  year={2022},
  address={Dublin, Ireland},
  publisher={Association for Computational Linguistics},
  url={https://aclanthology.org/2022.acl-long.490},
  doi={10.18653/v1/2022.acl-long.490},
  pages={7096--7108}
}
@article{zhu2023framework,
  title={A unified framework of medical information annotation and extraction for {C}hinese clinical text},
  author={Zhu, Enwei and Sheng, Qilin and Yang, Huanwan and Liu, Yiyang and Cai, Ting and Li, Jinpeng},
  journal={Artificial Intelligence in Medicine},
  volume={142},
  pages={102573},
  year={2023},
  publisher={Elsevier}
}

References

  • Chizat, L., Oyallon, E., and Bach, F. On lazy training in differentiable programming. In NeurIPS 2019.

About

Easy Natural Language Processing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.6%
  • Scheme 2.4%