Simplify. Unify. Amplify.
Feature | AutoLLM | LangChain | LlamaIndex | LiteLLM |
---|---|---|---|---|
100+ LLMs | β | β | β | β |
Unified API | β | β | β | β |
20+ Vector Databases | β | β | β | β |
Cost Calculation (100+ LLMs) | β | β | β | β |
1-Line RAG LLM Engine | β | β | β | β |
1-Line FastAPI | β | β | β | β |
easily install autollm package with pip in Python>=3.8 environment.
pip install autollm
for built-in data readers (github, pdf, docx, ipynb, epub, mbox, websites..), install with:
pip install autollm[readers]
-
video tutorials:
-
blog posts:
-
colab notebooks:
>>> from autollm import AutoQueryEngine, read_files_as_documents
>>> documents = read_files_as_documents(input_dir="examples/data")
>>> query_engine = AutoQueryEngine.from_parameters(documents)
>>> response = query_engine.query(
... "Why did SafeVideo AI develop this project?"
... )
>>> response.response
"Because they wanted to deploy rag based llm apis in no time!"
π advanced usage
>>> from autollm import AutoQueryEngine
>>> query_engine = AutoQueryEngine.from_parameters(
... documents=documents,
... system_prompt='...',
... query_wrapper_prompt='...',
... enable_cost_calculator=True,
... llm_params={"model": "gpt-3.5-turbo"},
... vector_store_params={
... "vector_store_type": "LanceDBVectorStore",
... "uri": "./.lancedb",
... "table_name": "vectors",
... "nprobs": 20
... },
... service_context_params={"chunk_size": 1024},
... query_engine_params={"similarity_top_k": 10},
... )
>>> response = query_engine.query("Who is SafeVideo AI?")
>>> print(response.response)
"A startup that provides self hosted AI API's for companies!"
>>> import uvicorn
>>> from autollm import AutoFastAPI
>>> app = AutoFastAPI.from_query_engine(query_engine)
>>> uvicorn.run(app, host="0.0.0.0", port=8000)
INFO: Started server process [12345]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://http://0.0.0.0:8000/
π advanced usage
>>> from autollm import AutoFastAPI
>>> app = AutoFastAPI.from_query_engine(
... query_engine,
... api_title='...',
... api_description='...',
... api_version='...',
... api_term_of_service='...',
)
>>> uvicorn.run(app, host="0.0.0.0", port=8000)
INFO: Started server process [12345]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://http://0.0.0.0:8000/
supports 100+ LLMs
>>> from autollm import AutoQueryEngine
>>> os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
>>> model = "huggingface/WizardLM/WizardCoder-Python-34B-V1.0"
>>> api_base = "https://my-endpoint.huggingface.cloud"
>>> llm_params = {
... "model": model,
... "api_base": api_base,
... }
>>> AutoQueryEngine.from_parameters(
... documents='...',
... llm_params=llm_params
... )
π more llms:
-
huggingface - ollama example:
>>> from autollm import AutoQueryEngine >>> model = "ollama/llama2" >>> api_base = "http://localhost:11434" >>> llm_params = { ... "model": model, ... "api_base": api_base, ... } >>> AutoQueryEngine.from_parameters( ... documents='...', ... llm_params=llm_params ... )
-
microsoft azure - openai example:
>>> from autollm import AutoQueryEngine >>> os.environ["AZURE_API_KEY"] = "" >>> os.environ["AZURE_API_BASE"] = "" >>> os.environ["AZURE_API_VERSION"] = "" >>> model = "azure/<your_deployment_name>") >>> llm_params = {"model": model} >>> AutoQueryEngine.from_parameters( ... documents='...', ... llm_params=llm_params ... )
-
google - vertexai example:
>>> from autollm import AutoQueryEngine >>> os.environ["VERTEXAI_PROJECT"] = "hardy-device-38811" # Your Project ID` >>> os.environ["VERTEXAI_LOCATION"] = "us-central1" # Your Location >>> model = "text-bison@001" >>> llm_params = {"model": model} >>> AutoQueryEngine.from_parameters( ... documents='...', ... llm_params=llm_params ... )
-
aws bedrock - claude v2 example:
>>> from autollm import AutoQueryEngine >>> os.environ["AWS_ACCESS_KEY_ID"] = "" >>> os.environ["AWS_SECRET_ACCESS_KEY"] = "" >>> os.environ["AWS_REGION_NAME"] = "" >>> model = "anthropic.claude-v2" >>> llm_params = {"model": model} >>> AutoQueryEngine.from_parameters( ... documents='...', ... llm_params=llm_params ... )
supports 20+ VectorDBs
πPro Tip: autollm
defaults to lancedb
as the vector store:
it's setup-free, serverless, and 100x more cost-effective!
π more vectordbs:
- QdrantVectorStore example:
>>> from autollm import AutoQueryEngine >>> import qdrant_client >>> vector_store_type = "QdrantVectorStore" >>> client = qdrant_client.QdrantClient( ... url="http://<host>:<port>", ... api_key="<qdrant-api-key>" ... ) >>> collection_name = "quickstart" >>> vector_store_params = { ... "vector_store_type": vector_store_type, ... "client": client, ... "collection_name": collection_name, ... } >>> AutoQueryEngine.from_parameters( ... documents='...', ... vector_store_params=vector_store_params ... )
automated cost calculation for 100+ LLMs
>>> from autollm import AutoServiceContext
>>> service_context = AutoServiceContext(enable_cost_calculation=True)
# Example verbose output after query
Embedding Token Usage: 7
LLM Prompt Token Usage: 1482
LLM Completion Token Usage: 47
LLM Total Token Cost: $0.002317
π example
>>> from autollm import AutoFastAPI
>>> app = AutoFastAPI.from_config(config_path, env_path)
Here, config
and env
should be replaced by your configuration and environment file paths.
After creating your FastAPI app, run the following command in your terminal to get it up and running:
uvicorn main:app
switching from Llama-Index? We've got you covered.
π easy migration
>>> from llama_index import StorageContext, ServiceContext, VectorStoreIndex
>>> from llama_index.vectorstores import LanceDBVectorStore
>>> from autollm import AutoQueryEngine
>>> vector_store = LanceDBVectorStore(uri="./.lancedb")
>>> storage_context = StorageContext.from_defaults(vector_store=vector_store)
>>> index = VectorStoreIndex.from_documents(documents=documents)
>>> service_context = ServiceContext.from_defaults()
>>> query_engine = AutoQueryEngine.from_instances(index, service_context)
Q: Can I use this for commercial projects?
A: Yes, AutoLLM is licensed under GNU Affero General Public License (AGPL 3.0), which allows for commercial use under certain conditions. Contact us for more information.
our roadmap outlines upcoming features and integrations to make autollm the most extensible and powerful base package for large language model applications.
-
1-line Gradio app creation and deployment
-
Budget based email notification
-
Automated LLM evaluation
-
Add more quickstart apps on pdf-chat, documentation-chat, academic-paper-analysis, patent-analysis and more!
autollm is available under the GNU Affero General Public License (AGPL 3.0).
for more information, support, or questions, please contact:
- Email: [email protected]
- Website: SafeVideo
- LinkedIn: SafeVideo AI
love autollm? star the repo or contribute and help us make it even better! see our contributing guidelines for more information.