Skip to content

Sistem de acces in parking cu control al clientilor si al abonatilor

Notifications You must be signed in to change notification settings

EticalPy/Aplicatie_parking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Aplicatie parking

Sistem de acces in parking cu control al clientilor si al abonatilor. sistem de parcare automat care prin detectarea numarului de inmatriculare in timp real face distinctia dintre clientii ocazionali (carora le percepe o taxa in functie de durata stationarii) si abonati. Detectarea placutei de inmatriculare se face cu yolov5 iar citirea ei in timp real cu easyOCR. Sistemul include doua monitoare - unul interactiv (destinat clientilor) iar altul de control (destinat administratiei)

SMART_PARKING

  1. Creem un dosar "data" cu urmatoarea configuratie

                                    Data   -images - train

                                                             - val

                                                 -labels - train

                                                            - val

In dosarul data/images/train si data/images/val punem imaginile cu numere de înmatriculare pe care le putem descarca din : .... in urmatoarele proportii:

                                    70% - data/images/train

                                    30% - data/images/val

 

  1. etichetam, separat, imaginile cu numere de înmatriculare din dosarele de mai sus . Etichetarea o putem face in : https://www.makesense.ai/

 

  1. Descarcam etichetele si le punem, corespunzator, in dosarele

 

                                               data/labels/train -> etichetele imaginilor din dosarul  data/images/train

                                               data/labels/val   -> etichetele imaginilor din dosarul  data/images/val

 

  1. Comprimam dosarul data in format .zip

 

  1. Accesam yolov5 in google colab urmarind urmatorul link:

https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb

 

  1. Instalam yolov executand prima celula din google colab
  2. Urcam in Colab dosarul data.zip
  3. Descomprimam dosarul data. zip cu comanda:

                                    !unzip -q /content/data.zip -d /content

 

  1. din dosarul /content/yolov5/data/ din colab descarcam fisierul coco128.yaml pe care il modificam (va las un link cu fisierul modificat) si-l salvam cu numele custom.yaml

https://mega.nz/file/tuogmQLL#-azLvztbDYUIVw34bM9JYDqS4AkF9Oe4gePpRfGSyiM

  1. Urcam fisierul modificat in colab si il punem in acelasi dosar /content/yolov5/data/
  2. Antrenam modelul executand celula cu linia de antrenament unde, in prealabil, facem urmatoarele modificari:

            --img 640

            --batch 8 --epochs 150

--data -data/content/yolov5/data/custom.yaml

            --weights yolov5x6.pt

 

  1. In ambientul virtual executam fisierul : requierements.txt

pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt

                                              

  1. Dupa instalare instalam easyocr

                                    pip install easyocr

  1. Desinsatalam opencv-python-headless si opencv-python

                                    pip uninstall opencv-python-headless

                                    pip uninstall opencv-python

     14.  Reinstalam opencv_python

                                    pip install opencv-python-4.5.4.60

 

Odata ajunsi in faza asta putem executa in ambientul nostru virtual parkingapp.py

Puteti urmari tutorilaul video complet pe Youtube https://www.youtube.com/watch?v=uIKij3uhhZY

About

Sistem de acces in parking cu control al clientilor si al abonatilor

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages