Skip to content

Commit

Permalink
zwischenspeicherungen-block-4
Browse files Browse the repository at this point in the history
  • Loading branch information
FWisniewski44 committed Mar 6, 2024
1 parent cf43b9c commit 7d00e28
Show file tree
Hide file tree
Showing 8 changed files with 2,592 additions and 53 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
mergerDaten/
csvs/*
.~lock*
auswertungRfiles/graphiken/
auswertungRfiles/politikerdaten/
auswertungRfiles/mediendaten/
auswertungRfiles/.RData
Expand Down
22 changes: 11 additions & 11 deletions auswertungRfiles/005_graphischeUeberpruefung.R
Original file line number Diff line number Diff line change
Expand Up @@ -640,9 +640,9 @@ ggarrange(ukraine_TS_allg, ukraine_TS_Afd,
# aktivste user zum thema covid in den parteien vergleichen
# erstellen einer informativen, dashboard-artigen visualisierung

# timePol_maximus_afd <- timePol_maximus %>% filter(partei == "AfD")
# timePol_maximus_spd <- timePol_maximus %>% filter(partei == "SPD")
# timePol_maximus_fdp <- timePol_maximus %>% filter(partei == "FDP")
timePol_maximus_afd <- timePol_maximus %>% filter(partei == "AfD")
timePol_maximus_spd <- timePol_maximus %>% filter(partei == "SPD")
timePol_maximus_fdp <- timePol_maximus %>% filter(partei == "FDP")
# unique(timePol_maximus_afd$user)

activeCovidUsers <- timePol_maximus %>% group_by(user) %>% filter(sum(covid) >= 100)
Expand All @@ -658,19 +658,19 @@ a <- ggplot() +
stat_summary(data = activeCovidUsers, aes(dateTime, covid, fill=partei), color="grey25", position = "fill", geom = "area", fun = sum, na.rm = T) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme_ipsum(base_family = "TeX Gyre Heros", base_size = 11.5) +
ggtitle(label = "Das Thema COVID-19", subtitle = "Behandlung des Themas in Abhängigkeit von der Partei") +
scale_fill_manual(name="Parteien", values = parteifarben) +
xlab("") +
ylab("Erwähnungen (absolut)")

b <- ggplot() +
stat_summary(data = activeCovidUsers_afd, aes(dateTime, covid), color="#0087c1", geom = "line", fun = sum) +
stat_summary(data = activeCovidUsers_spd, aes(dateTime, covid), color="#e40006", geom = "line", fun = sum) + #effektiv karl lauterbach alleine
#stat_summary(data = activeCovidUsers_spd, aes(dateTime, covid), color="#e40006", geom = "line", fun = sum) + #effektiv karl lauterbach alleine
stat_summary(data = activeCovidUsers_fdp, aes(dateTime, covid), color="#ffee00", geom = "line", fun = sum) +
scale_x_date(breaks = "1 month", labels = date_format(format = "%b", locale = "de")) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme_ipsum(base_family = "TeX Gyre Heros", base_size = 11.5) +
ggtitle(label = "Behandlung des Themas COVID", subtitle = "Zeitverlauf für PolitikerInnen der AfD und der SPD im Vergleich") +
scale_fill_manual(name="PolitikerInnen", values = sechzehnFarben) +
xlab("") +
Expand All @@ -684,13 +684,13 @@ c <- timePol_userParty %>%
ggplot(aes(y=user, x=covid, fill=partei)) +
geom_bar(position="dodge", stat="identity") +
scale_fill_manual(name="Parteizugehörigkeit", values = parteifarben) +
theme_ft_rc(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme_ipsum(base_family = "TeX Gyre Heros", base_size = 11.5) +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5)) +
xlab("Posts zum Thema 'covid'") +
ylab("Usernamen") +
ggtitle(label = "POLITIKERINNEN zum Thema COVID", subtitle = "Graphik für jene mit mind. 100 Tweets/Thema")

arrangement_politiker_covid <- ggarrange(a, ggarrange(b, c, ncol = 2), nrow = 2)
arrangement_politiker_covid <- ggarrange(a, ggarrange(b, c, ncol = 2, labels = c("2)", "3)")), nrow = 2, labels = "1)")
annotate_figure(arrangement_politiker_covid,
bottom=text_grob("Hinweis: Gezählte Beiträge der SPD in diesen Graphiken stammen allein von Gesundheitsminister K. Lauterbach.",
face = "italic",
Expand Down Expand Up @@ -763,7 +763,7 @@ medienCovid1200 <- timeMedia_userBundesland %>%
ylab("Usernamen") +
ggtitle(label = "MEDIEN zum Thema COVID", subtitle = "Graphik für jene mit mind. 1200 Tweets/Thema")

# UKRAINE TOPIC
# UKRAINE TOPIC (wäre cool mit discursive power variablen, evtl neuer versuch starten mit zugehörigen datensätzen)
medienUkraine1200 <- timeMedia_userBundesland %>%
filter(ukraine >= 1200) %>%
mutate(user = fct_reorder(user, desc(-ukraine))) %>%
Expand All @@ -781,11 +781,11 @@ ggarrange(legend = "bottom", common.legend = F, medienUkraine1200, medienCovid12

normalize <- function(v, na.rm = FALSE) (v - min(v, na.rm = na.rm))/diff(range(v, na.rm = na.rm)) ## stackoverflow, macht aber das gleiche wie meine funktion, aber bezieht dabei die NAs mit ein, wobei sich keine darin befinden dürften -- an sich also obsolet

obj <- lapply(timePol_topics[,-1], FUN = minMaxNorm)
obj <- lapply(timePol_topics[,-c(1, 17:19)], FUN = minMaxNorm)
obj <- as_tidytable(obj)
obj$dateTime <- timePol_topics$dateTime

objMed <- lapply(timeMedia_topics[,-1], FUN = minMaxNorm)
objMed <- lapply(timeMedia_topics[,-c(1, 17:19)], FUN = minMaxNorm)
objMed <- as_tidytable(objMed)
objMed$dateTime <- timeMedia_topics$dateTime

Expand Down
Loading

0 comments on commit 7d00e28

Please sign in to comment.