-
Notifications
You must be signed in to change notification settings - Fork 140
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 2f88e6a
Showing
62 changed files
with
12,455 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
__pycache__/ | ||
build/ | ||
*.egg-info/ | ||
*.so | ||
*.mp4 | ||
|
||
tmp* | ||
trial*/ | ||
|
||
data | ||
data_utils/face_tracking/3DMM/* | ||
data_utils/face_parsing/79999_iter.pth | ||
|
||
pretrained | ||
*.mp4 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2022 hawkey | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
# Routines for DeepSpeech features processing | ||
Several routines for [DeepSpeech](https://github.com/mozilla/DeepSpeech) features processing, like speech features generation for [VOCA](https://github.com/TimoBolkart/voca) model. | ||
|
||
## Installation | ||
|
||
``` | ||
pip3 install -r requirements.txt | ||
``` | ||
|
||
## Usage | ||
|
||
Generate wav files: | ||
``` | ||
python3 extract_wav.py --in-video=<you_data_dir> | ||
``` | ||
|
||
Generate files with DeepSpeech features: | ||
``` | ||
python3 extract_ds_features.py --input=<you_data_dir> | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
""" | ||
DeepSpeech features processing routines. | ||
NB: Based on VOCA code. See the corresponding license restrictions. | ||
""" | ||
|
||
__all__ = ['conv_audios_to_deepspeech'] | ||
|
||
import numpy as np | ||
import warnings | ||
import resampy | ||
from scipy.io import wavfile | ||
from python_speech_features import mfcc | ||
import tensorflow.compat.v1 as tf | ||
tf.disable_v2_behavior() | ||
|
||
def conv_audios_to_deepspeech(audios, | ||
out_files, | ||
num_frames_info, | ||
deepspeech_pb_path, | ||
audio_window_size=1, | ||
audio_window_stride=1): | ||
""" | ||
Convert list of audio files into files with DeepSpeech features. | ||
Parameters | ||
---------- | ||
audios : list of str or list of None | ||
Paths to input audio files. | ||
out_files : list of str | ||
Paths to output files with DeepSpeech features. | ||
num_frames_info : list of int | ||
List of numbers of frames. | ||
deepspeech_pb_path : str | ||
Path to DeepSpeech 0.1.0 frozen model. | ||
audio_window_size : int, default 16 | ||
Audio window size. | ||
audio_window_stride : int, default 1 | ||
Audio window stride. | ||
""" | ||
# deepspeech_pb_path="/disk4/keyu/DeepSpeech/deepspeech-0.9.2-models.pbmm" | ||
graph, logits_ph, input_node_ph, input_lengths_ph = prepare_deepspeech_net( | ||
deepspeech_pb_path) | ||
|
||
with tf.compat.v1.Session(graph=graph) as sess: | ||
for audio_file_path, out_file_path, num_frames in zip(audios, out_files, num_frames_info): | ||
print(audio_file_path) | ||
print(out_file_path) | ||
audio_sample_rate, audio = wavfile.read(audio_file_path) | ||
if audio.ndim != 1: | ||
warnings.warn( | ||
"Audio has multiple channels, the first channel is used") | ||
audio = audio[:, 0] | ||
ds_features = pure_conv_audio_to_deepspeech( | ||
audio=audio, | ||
audio_sample_rate=audio_sample_rate, | ||
audio_window_size=audio_window_size, | ||
audio_window_stride=audio_window_stride, | ||
num_frames=num_frames, | ||
net_fn=lambda x: sess.run( | ||
logits_ph, | ||
feed_dict={ | ||
input_node_ph: x[np.newaxis, ...], | ||
input_lengths_ph: [x.shape[0]]})) | ||
|
||
net_output = ds_features.reshape(-1, 29) | ||
win_size = 16 | ||
zero_pad = np.zeros((int(win_size / 2), net_output.shape[1])) | ||
net_output = np.concatenate( | ||
(zero_pad, net_output, zero_pad), axis=0) | ||
windows = [] | ||
for window_index in range(0, net_output.shape[0] - win_size, 2): | ||
windows.append( | ||
net_output[window_index:window_index + win_size]) | ||
print(np.array(windows).shape) | ||
np.save(out_file_path, np.array(windows)) | ||
|
||
|
||
def prepare_deepspeech_net(deepspeech_pb_path): | ||
""" | ||
Load and prepare DeepSpeech network. | ||
Parameters | ||
---------- | ||
deepspeech_pb_path : str | ||
Path to DeepSpeech 0.1.0 frozen model. | ||
Returns | ||
------- | ||
graph : obj | ||
ThensorFlow graph. | ||
logits_ph : obj | ||
ThensorFlow placeholder for `logits`. | ||
input_node_ph : obj | ||
ThensorFlow placeholder for `input_node`. | ||
input_lengths_ph : obj | ||
ThensorFlow placeholder for `input_lengths`. | ||
""" | ||
# Load graph and place_holders: | ||
with tf.io.gfile.GFile(deepspeech_pb_path, "rb") as f: | ||
graph_def = tf.compat.v1.GraphDef() | ||
graph_def.ParseFromString(f.read()) | ||
|
||
graph = tf.compat.v1.get_default_graph() | ||
tf.import_graph_def(graph_def, name="deepspeech") | ||
logits_ph = graph.get_tensor_by_name("deepspeech/logits:0") | ||
input_node_ph = graph.get_tensor_by_name("deepspeech/input_node:0") | ||
input_lengths_ph = graph.get_tensor_by_name("deepspeech/input_lengths:0") | ||
|
||
return graph, logits_ph, input_node_ph, input_lengths_ph | ||
|
||
|
||
def pure_conv_audio_to_deepspeech(audio, | ||
audio_sample_rate, | ||
audio_window_size, | ||
audio_window_stride, | ||
num_frames, | ||
net_fn): | ||
""" | ||
Core routine for converting audion into DeepSpeech features. | ||
Parameters | ||
---------- | ||
audio : np.array | ||
Audio data. | ||
audio_sample_rate : int | ||
Audio sample rate. | ||
audio_window_size : int | ||
Audio window size. | ||
audio_window_stride : int | ||
Audio window stride. | ||
num_frames : int or None | ||
Numbers of frames. | ||
net_fn : func | ||
Function for DeepSpeech model call. | ||
Returns | ||
------- | ||
np.array | ||
DeepSpeech features. | ||
""" | ||
target_sample_rate = 16000 | ||
if audio_sample_rate != target_sample_rate: | ||
resampled_audio = resampy.resample( | ||
x=audio.astype(np.float), | ||
sr_orig=audio_sample_rate, | ||
sr_new=target_sample_rate) | ||
else: | ||
resampled_audio = audio.astype(np.float) | ||
input_vector = conv_audio_to_deepspeech_input_vector( | ||
audio=resampled_audio.astype(np.int16), | ||
sample_rate=target_sample_rate, | ||
num_cepstrum=26, | ||
num_context=9) | ||
|
||
network_output = net_fn(input_vector) | ||
# print(network_output.shape) | ||
|
||
deepspeech_fps = 50 | ||
video_fps = 50 # Change this option if video fps is different | ||
audio_len_s = float(audio.shape[0]) / audio_sample_rate | ||
if num_frames is None: | ||
num_frames = int(round(audio_len_s * video_fps)) | ||
else: | ||
video_fps = num_frames / audio_len_s | ||
network_output = interpolate_features( | ||
features=network_output[:, 0], | ||
input_rate=deepspeech_fps, | ||
output_rate=video_fps, | ||
output_len=num_frames) | ||
|
||
# Make windows: | ||
zero_pad = np.zeros((int(audio_window_size / 2), network_output.shape[1])) | ||
network_output = np.concatenate( | ||
(zero_pad, network_output, zero_pad), axis=0) | ||
windows = [] | ||
for window_index in range(0, network_output.shape[0] - audio_window_size, audio_window_stride): | ||
windows.append( | ||
network_output[window_index:window_index + audio_window_size]) | ||
|
||
return np.array(windows) | ||
|
||
|
||
def conv_audio_to_deepspeech_input_vector(audio, | ||
sample_rate, | ||
num_cepstrum, | ||
num_context): | ||
""" | ||
Convert audio raw data into DeepSpeech input vector. | ||
Parameters | ||
---------- | ||
audio : np.array | ||
Audio data. | ||
audio_sample_rate : int | ||
Audio sample rate. | ||
num_cepstrum : int | ||
Number of cepstrum. | ||
num_context : int | ||
Number of context. | ||
Returns | ||
------- | ||
np.array | ||
DeepSpeech input vector. | ||
""" | ||
# Get mfcc coefficients: | ||
features = mfcc( | ||
signal=audio, | ||
samplerate=sample_rate, | ||
numcep=num_cepstrum) | ||
|
||
# We only keep every second feature (BiRNN stride = 2): | ||
features = features[::2] | ||
|
||
# One stride per time step in the input: | ||
num_strides = len(features) | ||
|
||
# Add empty initial and final contexts: | ||
empty_context = np.zeros((num_context, num_cepstrum), dtype=features.dtype) | ||
features = np.concatenate((empty_context, features, empty_context)) | ||
|
||
# Create a view into the array with overlapping strides of size | ||
# numcontext (past) + 1 (present) + numcontext (future): | ||
window_size = 2 * num_context + 1 | ||
train_inputs = np.lib.stride_tricks.as_strided( | ||
features, | ||
shape=(num_strides, window_size, num_cepstrum), | ||
strides=(features.strides[0], | ||
features.strides[0], features.strides[1]), | ||
writeable=False) | ||
|
||
# Flatten the second and third dimensions: | ||
train_inputs = np.reshape(train_inputs, [num_strides, -1]) | ||
|
||
train_inputs = np.copy(train_inputs) | ||
train_inputs = (train_inputs - np.mean(train_inputs)) / \ | ||
np.std(train_inputs) | ||
|
||
return train_inputs | ||
|
||
|
||
def interpolate_features(features, | ||
input_rate, | ||
output_rate, | ||
output_len): | ||
""" | ||
Interpolate DeepSpeech features. | ||
Parameters | ||
---------- | ||
features : np.array | ||
DeepSpeech features. | ||
input_rate : int | ||
input rate (FPS). | ||
output_rate : int | ||
Output rate (FPS). | ||
output_len : int | ||
Output data length. | ||
Returns | ||
------- | ||
np.array | ||
Interpolated data. | ||
""" | ||
input_len = features.shape[0] | ||
num_features = features.shape[1] | ||
input_timestamps = np.arange(input_len) / float(input_rate) | ||
output_timestamps = np.arange(output_len) / float(output_rate) | ||
output_features = np.zeros((output_len, num_features)) | ||
for feature_idx in range(num_features): | ||
output_features[:, feature_idx] = np.interp( | ||
x=output_timestamps, | ||
xp=input_timestamps, | ||
fp=features[:, feature_idx]) | ||
return output_features |
Oops, something went wrong.