Model Name | Task | Metrics | Domain |
---|---|---|---|
focoos_object365 | Detection | - | Common Objects, 365 classes |
focoos_rtdetr | Detection | - | Common Objects, 80 classes |
focoos_cts_medium | Semantic Segmentation | - | Autonomous driving, 30 classes |
focoos_cts_large | Semantic Segmentation | - | Autonomous driving, 30 classes |
focoos_ade_nano | Semantic Segmentation | - | Common Scenes, 150 classes |
focoos_ade_small | Semantic Segmentation | - | Common Scenes, 150 classes |
focoos_ade_medium | Semantic Segmentation | - | Common Scenes, 150 classes |
focoos_ade_large | Semantic Segmentation | - | Common Scenes, 150 classes |
focoos_aeroscapes | Semantic Segmentation | - | Drone Aerial Scenes, 11 classes |
focoos_isaid_nano | Semantic Segmentation | - | Satellite Imagery, 15 classes |
focoos_isaid_medium | Semantic Segmentation | - | Satellite Imagery, 15 classes |
For local inference, ensure that you have CUDA 12 and cuDNN 9 installed, as they are required for onnxruntime version 1.20.1.
To install cuDNN 9:
apt-get -y install cudnn9-cuda-12
To perform inference using TensorRT, ensure you have TensorRT version 10.5 installed.
Nvidia GPU:
pip install '.[gpu]'
Nvidia GPU,TensorRT:
pip install '.[gpu,tensorrt]'
CPU,COREML:
pip install '.[cpu]'
from focoos import Focoos
focoos = Focoos(api_key=os.getenv("FOCOOS_API_KEY"))
model = focoos.get_remote_model("focoos_object365")
detections = model.infer("./image.jpg", threshold=0.4)
setup FOCOOS_API_KEY_GRADIO environment variable with your Focoos API key
pip install '.[gradio]'
python gradio/app.py
from focoos import Focoos
focoos = Focoos(api_key=os.getenv("FOCOOS_API_KEY"))
model = focoos.get_local_model("focoos_object365")
detections = model.infer("./image.jpg", threshold=0.4)