Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sparse optimizations for GaBW sampling #331

Open
wants to merge 3 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 33 additions & 8 deletions include/convex_bodies/hpolytope.h
Original file line number Diff line number Diff line change
Expand Up @@ -1010,9 +1010,10 @@ class HPolytope {

// updates the velocity vector v and the position vector p after a reflection
// the real value of p is given by p + moved_dist * v
// MT must be sparse, in RowMajor format
template <typename update_parameters>
auto compute_reflection(Point &v, Point &p, update_parameters const& params) const
-> std::enable_if_t<std::is_same_v<MT, Eigen::SparseMatrix<NT, Eigen::RowMajor>> && !std::is_same_v<update_parameters, int>, void> { // MT must be in RowMajor format
-> std::enable_if_t<std::is_same_v<MT, Eigen::SparseMatrix<NT, Eigen::RowMajor>> && !std::is_same_v<update_parameters, int>, void> {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What is update_parameters here? I do not understand !std::is_same_v<update_parameters could you please explain?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

basically there's another compute_reflection function above which takes an integer (just the facet) as the 3rd argument, and for some reason, if I don't have that condition the compiler decides to call this function assuming that the typename of update_parameters is int. There might maybe be better ways of dealing with these issues, but I remember I tried to solve them for some time and this is the best I could do, I couldn't at all understand how the compiler chooses which function to use when there's multiple ones that match

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It seems that we are too generic here and that complicates the interface a lot! compute_reflection is called by several walks. Instead of creating all those complicated overloads why not simply create a new name. Especially if this is the case that this function is only called by a single walk (i.e. accelerated billiard walk). Moreover, update_parameters should not be a template but the struct defined in billiard walk, in all other cases this code will not compile since all other "update_parameters" does not have a moved_dist field.

NT* v_data = v.pointerToData();
NT* p_data = p.pointerToData();
for(Eigen::SparseMatrix<double, Eigen::RowMajor>::InnerIterator it(A, params.facet_prev); it; ++it) {
Expand All @@ -1021,15 +1022,39 @@ class HPolytope {
}
}

template <typename update_parameters>
NT compute_reflection(Point &v, const Point &, DenseMT const &AE, VT const &AEA, NT const &vEv, update_parameters const &params) const {
// function to compute reflection for GaBW random walk
// compatible when the polytope is both dense or sparse
template <typename DenseSparseMT, typename update_parameters>
NT compute_reflection(Point &v, Point &p, NT &vEv, DenseSparseMT const &AE, VT const &AEA, update_parameters const &params) const {

NT new_vEv;
if constexpr (!std::is_same_v<MT, Eigen::SparseMatrix<NT, Eigen::RowMajor>>) {
Point a((-2.0 * params.inner_vi_ak) * A.row(params.facet_prev));
VT x = v.getCoefficients();
new_vEv = vEv - (4.0 * params.inner_vi_ak) * (AE.row(params.facet_prev).dot(x) - params.inner_vi_ak * AEA(params.facet_prev));
v += a;
} else {

if constexpr(!std::is_same_v<DenseSparseMT, Eigen::SparseMatrix<NT, Eigen::RowMajor>>) {
VT x = v.getCoefficients();
new_vEv = vEv - (4.0 * params.inner_vi_ak) * (AE.row(params.facet_prev).dot(x) - params.inner_vi_ak * AEA(params.facet_prev));
} else {
new_vEv = vEv + 4.0 * params.inner_vi_ak * params.inner_vi_ak * AEA(params.facet_prev);
NT* v_data = v.pointerToData();
for(Eigen::SparseMatrix<double, Eigen::RowMajor>::InnerIterator it(AE, params.facet_prev); it; ++it) {
new_vEv -= 4.0 * params.inner_vi_ak * it.value() * *(v_data + it.col());
}
}

Point a((-2.0 * params.inner_vi_ak) * A.row(params.facet_prev));
VT x = v.getCoefficients();
NT new_vEv = vEv - (4.0 * params.inner_vi_ak) * (AE.row(params.facet_prev).dot(x) - params.inner_vi_ak * AEA(params.facet_prev));
v += a;
NT* v_data = v.pointerToData();
NT* p_data = p.pointerToData();
for(Eigen::SparseMatrix<double, Eigen::RowMajor>::InnerIterator it(A, params.facet_prev); it; ++it) {
*(v_data + it.col()) += (-2.0 * params.inner_vi_ak) * it.value();
*(p_data + it.col()) -= (-2.0 * params.inner_vi_ak * params.moved_dist) * it.value();
}
}
NT coeff = std::sqrt(vEv / new_vEv);
v = v * coeff;
vEv = new_vEv;
return coeff;
}

Expand Down
133 changes: 133 additions & 0 deletions include/random_walks/accelerated_billiard_walk_utils.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
// VolEsti (volume computation and sampling library)

// Copyright (c) 2012-2020 Vissarion Fisikopoulos
// Copyright (c) 2018-2020 Apostolos Chalkis
// Copyright (c) 2024 Luca Perju

// Licensed under GNU LGPL.3, see LICENCE file

#ifndef ACCELERATED_BILLIARD_WALK_UTILS_HPP
#define ACCELERATED_BILLIARD_WALK_UTILS_HPP

#include <Eigen/Eigen>
#include <vector>

const double eps = 1e-10;

// data structure which maintains the values of (b - Ar)/Av, and can extract the minimum positive value and the facet associated with it
// vec[i].first contains the value of (b(i) - Ar(i))/Av(i) + moved_dist, where moved_dist is the total distance that the point has travelled so far
// The heap will only contain the values from vec which are greater than moved_dist (so that they are positive)
template<typename NT>
class BoundaryOracleHeap {
public:
int n, heap_size;
std::vector<std::pair<NT, int>> heap;
std::vector<std::pair<NT, int>> vec;

private:
int siftDown(int index) {
while((index << 1) + 1 < heap_size) {
int child = (index << 1) + 1;
if(child + 1 < heap_size && heap[child + 1].first < heap[child].first - eps) {
child += 1;
}
if(heap[child].first < heap[index].first - eps)
{
std::swap(heap[child], heap[index]);
std::swap(vec[heap[child].second].second, vec[heap[index].second].second);
index = child;
} else {
return index;
}
}
return index;
}

int siftUp(int index) {
while(index > 0 && heap[(index - 1) >> 1].first - eps > heap[index].first) {
std::swap(heap[(index - 1) >> 1], heap[index]);
std::swap(vec[heap[(index - 1) >> 1].second].second, vec[heap[index].second].second);
index = (index - 1) >> 1;
}
return index;
}

// takes the index of a facet, and (in case it is in the heap) removes it from the heap.
void remove (int index) {
index = vec[index].second;
if(index == -1) {
return;
}
std::swap(heap[heap_size - 1], heap[index]);
std::swap(vec[heap[heap_size - 1].second].second, vec[heap[index].second].second);
vec[heap[heap_size - 1].second].second = -1;
heap_size -= 1;
index = siftDown(index);
siftUp(index);
}

// inserts a new value into the heap, with its associated facet
void insert (const std::pair<NT, int> val) {
vec[val.second].second = heap_size;
vec[val.second].first = val.first;
heap[heap_size++] = val;
siftUp(heap_size - 1);
}

public:
BoundaryOracleHeap() {}

BoundaryOracleHeap(int n) : n(n), heap_size(0) {
heap.resize(n);
vec.resize(n);
}

// rebuilds the heap with the existing values from vec
// O(n)
void rebuild (const NT &moved_dist) {
heap_size = 0;
for(int i = 0; i < n; ++i) {
vec[i].second = -1;
if(vec[i].first - eps > moved_dist) {
vec[i].second = heap_size;
heap[heap_size++] = {vec[i].first, i};
}
}
for(int i = heap_size - 1; i >= 0; --i) {
siftDown(i);
}
}

// returns (b(i) - Ar(i))/Av(i) + moved_dist
// O(1)
NT get_val (const int &index) {
return vec[index].first;
}

// returns the nearest facet
// O(1)
std::pair<NT, int> get_min () {
return heap[0];
}

// changes the stored value for a given facet, and updates the heap accordingly
// O(logn)
void change_val(const int& index, const NT& new_val, const NT& moved_dist) {
if(new_val < moved_dist - eps) {
vec[index].first = new_val;
remove(index);
} else {
if(vec[index].second == -1) {
insert({new_val, index});
} else {
heap[vec[index].second].first = new_val;
vec[index].first = new_val;
siftDown(vec[index].second);
siftUp(vec[index].second);
}
}
}
};


#endif
Loading
Loading